Problem:
For every integer nβ₯2, let pow (n) be the largest power of the largest prime that divides n. For example pow (144)=pow(24β
32)=32. What is the largest integer m such that 2010m divides
n=2β5300βpow(n)?
Answer Choices:
A. 74
B. 75
C. 76
D. 77
E. 78
Solution:
Observe that 2010=2β
3β
5β
67. Let P=βn=25300βpow(n)= 2aβ
3bβ
5cβ
67dβ
Q where Q is relatively prime with 2,3,5, and 67 . The largest power of 2010 that divides P is equal to 2010m where m=min(a,b,c,d).
By definition pow (n)=2k if and only if n=2k. Because 212=4096<5300< 8192=213, it follows that
a=1+2+β―+12=212β
13β=78
Similarly, pow (n)=67 if and only if n=67N and the largest prime dividing N is smaller than 67 . Because 5300=79β
67+7 and 71,73 , and 79 are the only primes p in the range 67<pβ€79; it follows that for nβ€5300, pow (n)=67 if and only if
nβ{67k:1β€kβ€79}\{672,67β
71,67β
73,67β
79}
Because 672<5300<2β
672, the only nβ€5300 for which pow (n)=67k with kβ₯2, is n=672. Therefore
d=79β4+2=77
If n=2jβ
3k for jβ₯0 and kβ₯1, then pow (n)=3k. Moreover, if 0β€jβ€2 and 1β€kβ€6, or if 0β€jβ€1 and k=7; then n=2jβ
3kβ€2β
37=4374<5300. Thus
bβ₯3(1+2+β―+6)+7+7=3β
21+14=77
If n=2iβ
3jβ
5k for i,jβ₯0 and kβ₯1, then pow (n)=5k. Moreover, If 2iβ
3jβ {1,2,3,22,2β
3,23,32,22β
3} and 1β€kβ€3, or if 2iβ
3jβ{1,2,3,22,2β
3,23} and k=4, or if 2iβ
3j=1 and k=5; then n=2iβ
3jβ
5kβ€8β
54=5000<5300. Thus
cβ₯8(1+2+3)+6β
4+5=77
Therefore m=d=77β.
The problems on this page are the property of the MAA's American Mathematics Competitions