Problem:
Let f(x)=1010x,g(x)=log10β(10xβ),h1β(x)=g(f(x)), and hnβ(x)=h1β(hnβ1β(x)) for integers nβ₯2. What is the sum of the digits of h2011β(1) ?
Answer Choices:
A. 16,081
B. 16,089
C. 18,089
D. 18,098
E. 18,099
Solution:
Note that
h1β(x)=log10β(101010xβ)=log10β(1010xβ1)=10xβ1
Therefore h2β(x)=102xβ(1+10),h3β(x)=103xβ(1+10+102), and in general,
hnβ(x)=10nxβk=0βnβ1β10k
Hence hnβ(1) is an n-digit integer whose units digit is 9 and whose other digits are all 8 's. The sum of the digits of h2011β(1) is 8β
2010+9=16,089β.
The problems on this page are the property of the MAA's American Mathematics Competitions