Problem:
In β³BAC,β BAC=40β,AB=10, and AC=6. Points D and E lie on AB and AC, respectively. What is the minimum possible value of BE+DE+CD ?
Answer Choices:
A. 63β+3
B. 227β
C. 83β
D. 14
E. 33β+9 Solution:
Let Bβ² be the reflection of point B across AC, and let Cβ² be the reflection of point C across AB. Then ABβ²=AB=10,ACβ²=AC= 6, BE=Bβ²E,CD=Cβ²D, and β Bβ²ACβ²=120β. By the Law of Cosines, Bβ²C2=102+62β2β 10β 6cos120β=196; thus Bβ²Cβ²=14. Furthermore, Bβ²Cβ²β€Bβ²E+DE+Cβ²D=BE+DE+CD. Therefore the answer is 14β .