Problem:
Let f0β(x)=x+β£xβ100β£ββ£x+100β£, and for nβ₯1, let fnβ(x)=β£fnβ1β(x)β£β1. For how many values of x is f100β(x)=0 ?
Answer Choices:
A. 299
B. 300
C. 301
D. 302
E. 303
Solution:
For integers nβ₯1 and kβ₯0, if fnβ1β(x)=Β±k, then fnβ(x)= kβ1. Thus if f0β(x)=Β±k, then fkβ(x)=0. Furthermore, if fnβ(x)=0, then fn+1β(x)=β1 and fn+2β(x)=0. It follows that the zeros of f100β are the solutions of f0β(x)=2k for β50β€kβ€50. To count these solutions, note that
f0β(x)=β©βͺβͺβ¨βͺβͺβ§βx+200 if x<β100βx if β100β€x<100, and xβ200 if xβ₯100β
The graph of f0β(x) is piecewise linear with turning points at (β100,100) and (100,β100). The line y=2k crosses the graph three times for β49β€kβ€49 and twice for k=Β±50. Therefore the number of zeros of f100β(x) is 99β
3+2β
2=301β.
The problems on this page are the property of the MAA's American Mathematics Competitions