Problem:
The number 2017 is prime. Let S=βk=062β(2014kβ). What is the remainder when S is divided by 2017 ?
Answer Choices:
A. 32
B. 684
C. 1024
D. 1576
E. 2016
Solution:
Let n=(2014kβ). Note that 2016β
2015β‘(β1)(β2)=2 (mod2017) and 2016β
2015β―(2015βk)β‘(β1)(β2)β―(β(k+2))=(β1)k(k+ 2)!(mod2017). Because nβ
k!β
(2014βk)!=2014!, it follows that
nβ
k!β
(2014βk)!β
((2015βk)β―2015β
2016)β
2β‘2014!β
2015β
2016β
(β1)k(k+2)!(mod2017)β
Thus
2nβ
k!β
2016!β‘(β1)k(k+2)!β
2016!(mod2017)
Dividing by 2016 ! β
k !, which is relatively prime to 2017 , gives
2nβ‘(β1)k(k+2)(k+1)(mod2017)
Thus nβ‘(β1)k(k+22β)(mod2017). It follows that
Sβ‘k=0β62β(β1)k(k+22β)=1+k=1β31β((2k+22β)β(2k+12β))=1+k=1β31β(2k+1)=322=1024β(mod2017).β
The problems on this page are the property of the MAA's American Mathematics Competitions