Problem:
What is the value of (625log5β2015)41β?
Answer Choices:
A. 5
B. 42015β
C. 625
D. 2015
E. 452015β
Solution:
(625log5β2015)41β=((54)log5β2015)41β=(54log5β2015)41β=(5log5β2015)4β
41β=2015β
The problems on this page are the property of the MAA's American Mathematics Competitions