Problem:
What is the sum of the roots of z 12 = 64 z^{12}=64z 1 2 = 6 4 that have a positive real part?
Answer Choices:
A. 2 22
B. 4 44
C. 2 + 2 3 \sqrt{2}+2 \sqrt{3}2 β + 2 3 β
D. 2 2 + 6 2 \sqrt{2}+\sqrt{6}2 2 β + 6 β
E. ( 1 + 3 ) + ( 1 + 3 ) i (1+\sqrt{3})+(1+\sqrt{3}) i( 1 + 3 β ) + ( 1 + 3 β ) i
Solution:
The principal root of the equation z 12 = 64 z^{12}=64z 1 2 = 6 4 is
z = 6 4 1 12 β
( cos β‘ Ο 6 + i sin β‘ Ο 6 ) = 2 β
( cos β‘ Ο 6 + i sin β‘ Ο 6 ) z=64^{\dfrac{1}{12}} \cdot\left(\cos \dfrac{\pi}{6}+i \sin \dfrac{\pi}{6}\right)=\sqrt{2} \cdot\left(\cos \dfrac{\pi}{6}+i \sin \dfrac{\pi}{6}\right)
z = 6 4 1 2 1 β β
( cos 6 Ο β + i sin 6 Ο β ) = 2 β β
( cos 6 Ο β + i sin 6 Ο β )
The 12 roots lie in the complex plane on the circle of radius 2 \sqrt{2}2 β centered at the origin. The roots with positive real part make angles of 0 , Β± Ο 6 0, \pm \dfrac{\pi}{6}0 , Β± 6 Ο β , and Β± Ο 3 \pm \dfrac{\pi}{3}Β± 3 Ο β with the positive real axis. When these five numbers are added, the imaginary parts cancel out and the sum is
2 + 2 2 β
cos β‘ Ο 6 + 2 2 β
cos β‘ Ο 3 = 2 β
( 1 + 3 + 1 ) = 2 2 + 6 \sqrt{2}+2 \sqrt{2} \cdot \cos \dfrac{\pi}{6}+2 \sqrt{2} \cdot \cos \dfrac{\pi}{3}=\sqrt{2} \cdot(1+\sqrt{3}+1)= \boxed{2 \sqrt{2}+\sqrt{6}}
2 β + 2 2 β β
cos 6 Ο β + 2 2 β β
cos 3 Ο β = 2 β β
( 1 + 3 β + 1 ) = 2 2 β + 6 β β
The problems on this page are the property of the MAA's American Mathematics Competitions