Problem:
A function f is defined recursively by f(1)=f(2)=1 and
f(n)=f(nβ1)βf(nβ2)+n
for all integers nβ₯3. What is f(2018) ?
Answer Choices:
A. 2016
B. 2017
C. 2018
D. 2019
E. 2020
Solution:
Applying the recursion for several steps leads to the conjecture that
f(n)=β©βͺβͺβͺβͺβͺβͺβͺβ¨βͺβͺβͺβͺβͺβͺβͺβ§βn+2 if nβ‘0(mod6)n if nβ‘1(mod6)nβ1 if nβ‘2(mod6)n if nβ‘3(mod6)n+2 if nβ‘4(mod6)n+3 if nβ‘5(mod6)β
The conjecture can be verified using the strong form of mathematical induction with two base cases and six inductive steps. For example, if nβ‘2(mod6), then n=6k+2 for some nonnegative integer k and
f(n)=f(6k+2)=f(6k+1)βf(6k)+6k+2=(6k+1)β(6k+2)+6k+2=6k+1=nβ1.β
Therefore f(2018)=f(6β
336+2)=2018β1=2017β.
OR
Note that
f(n)=f(nβ1)βf(nβ2)+n=[f(nβ2)βf(nβ3)+(nβ1)]βf(nβ2)+n=β[f(nβ4)βf(nβ5)+(nβ3)]+2nβ1=β[f(nβ5)βf(nβ6)+(nβ4)]+f(nβ5)+n+2=f(nβ6)+6.β
It follows that f(2018)=f(2)+2016=2017β.
The problems on this page are the property of the MAA's American Mathematics Competitions