Problem:
What is the value of
log3β7β
log5β9β
log7β11β
log9β13β―log21β25β
log23β27?
Answer Choices:
A. 3
B. 3log7β23
C. 6
D. 9
E. 10
Solution:
The change of base formula states that logaβb=logalogbβ. Thus the product telescopes:
log3log7ββ
log5log9ββ
log7log11ββ
log9log13ββ―log21log25ββ
log23log27β=log3log25ββ
log5log27β=log3log52ββ
log5log33β=log32log5ββ
log53log3β=6β.β
OR
Let
a=log3β7β
log7β11β
log11β15β
log15β19β
log19β23β
log23β27
and
b=log5β9β
log9β13β
log13β17β
log17β21β
log21β25.
The required product is ab. Now
b=log5β9β
log9β13β
log13β17β
log17β21β
log21β25=log5β9log9β13β
log13β17β
log17β21β
log21β25=log5β13β
log13β17β
log17β21β
log21β25=log5β13log13β17β
log17β21β
log21β25=log5β17β
log17β21β
log21β25=log5β17log17β21β
log21β25=log5β21β
log21β25=log5β21log21β25=log5β25=2β
Similarly, a=log3β27=3, so ab=2β
3=6β.
The problems on this page are the property of the MAA's American Mathematics Competitions