Problem:
What is
i=1β100βj=1β100β(i+j)?
Answer Choices:
A. 100,100
B. 500,500
C. 505,000
D. 1,001,000
E. 1,010,000
Solution:
Note that the sum of the first 100 positive integers is 21ββ
100β
101=5050. Then
i=1β100βj=1β100β(i+j)=i=1β100βj=1β100βi+i=1β100βj=1β100βj=j=1β100βi=1β100βi+i=1β100βj=1β100βjβ
=100i=1β100βi+100j=1β100βj=100(5050+5050)=1,010,000ββ
OR
Note that the sum of the first 100 positive integers is 21ββ
100β
101= 5050. Then
i=1β100βj=1β100β(i+j)=i=1β100β((i+1)+(i+2)+β―+(i+100))=i=1β100β(100i+5050)=100β
5050+100β
5050=1,010,000ββ
OR
The sum contains 10,000 terms, and the average value of both i and j is 2101β, so the sum is equal to
10,000(2101β+2101β)=1,010,000β
The problems on this page are the property of the MAA's American Mathematics Competitions