Problem:
The 25 integers from -10 to 14 , inclusive, can be arranged to form a 5 -by- 5 square in which the sum of the numbers in each row, the sum of the numbers in each column, and the sum of the numbers along each of the main diagonals are all the same. What is the value of this common sum?
Answer Choices:
A.
B.
C.
D.
E.
Solution:
Without loss of generality, consider the five rows in the square. Each row must have the same sum of numbers, meaning that the sum of all the numbers in the square divided by is the total value per row. The sum of the integers is , and the common sum is .
OR
Take the sum of the middle values of the set (they will turn out to be the mean of each row). We get as our answer. Baolan
OR
Taking the average of the first and last terms, and , we have that the mean of the set is . There are values in each row, column or diagonal, so the value of the common sum is , or .
The problems on this page are the property of the MAA's American Mathematics Competitions