Problem:
Suppose that the roots of the polynomial P ( x ) = x 3 + a x 2 + b x + c P(x)=x^{3}+a x^{2}+b x+cP ( x ) = x 3 + a x 2 + b x + c are cos β‘ 2 Ο 7 , cos β‘ 4 Ο 7 \cos \dfrac{2 \pi}{7}, \cos \dfrac{4 \pi}{7}cos 7 2 Ο β , cos 7 4 Ο β , and cos β‘ 6 Ο 7 \cos \dfrac{6 \pi}{7}cos 7 6 Ο β , where angles are in radians. What is a b c a b ca b c ?
Answer Choices:
A. β 3 49 -\dfrac{3}{49}β 4 9 3 β
B. β 1 28 -\dfrac{1}{28}β 2 8 1 β
C. 3 7 64 \dfrac{3 \sqrt{7}}{64}6 4 3 7 β β
D. 1 32 \dfrac{1}{32}3 2 1 β
E. 1 28 \dfrac{1}{28}2 8 1 β
Solution:
By Vieta's formulas,
a = β ( cos β‘ 2 Ο 7 + cos β‘ 4 Ο 7 + cos β‘ 6 Ο 7 ) b = cos β‘ 2 Ο 7 β
cos β‘ 4 Ο 7 + cos β‘ 4 Ο 7 β
cos β‘ 6 Ο 7 + cos β‘ 6 Ο 7 β
cos β‘ 2 Ο 7 c = β cos β‘ 2 Ο 7 β
cos β‘ 4 Ο 7 β
cos β‘ 6 Ο 7 . \begin{aligned}
a=-\left(\cos \dfrac{2 \pi}{7}+\cos \dfrac{4 \pi}{7}+\cos \dfrac{6 \pi}{7}\right) \\
b=\cos \dfrac{2 \pi}{7} \cdot \cos \dfrac{4 \pi}{7}+\cos \dfrac{4 \pi}{7} \cdot \cos \dfrac{6 \pi}{7}+\cos \dfrac{6 \pi}{7} \cdot \cos \dfrac{2 \pi}{7} \\
c=-\cos \dfrac{2 \pi}{7} \cdot \cos \dfrac{4 \pi}{7} \cdot \cos \dfrac{6 \pi}{7} .
\end{aligned}
a = β ( cos 7 2 Ο β + cos 7 4 Ο β + cos 7 6 Ο β ) b = cos 7 2 Ο β β
cos 7 4 Ο β + cos 7 4 Ο β β
cos 7 6 Ο β + cos 7 6 Ο β β
cos 7 2 Ο β c = β cos 7 2 Ο β β
cos 7 4 Ο β β
cos 7 6 Ο β . β
The roots of the polynomial Q ( x ) = x 6 + x 5 + β― + x + 1 Q(x)=x^{6}+x^{5}+\cdots+x+1Q ( x ) = x 6 + x 5 + β― + x + 1 are the six primitive seventh roots of 1 , namely the numbers cos β‘ 2 k Ο 7 + i sin β‘ 2 k Ο 7 \cos \dfrac{2 k \pi}{7}+i \sin \dfrac{2 k \pi}{7}cos 7 2 k Ο β + i sin 7 2 k Ο β for k = 1 , 2 , 3 , 4 , 5 , 6 k=1,2,3,4,5,6k = 1 , 2 , 3 , 4 , 5 , 6 . These roots form three complex-conjugate pairs, so Q ( x ) Q(x)Q ( x ) can be written in factored form as
Q ( x ) = ( x β ( cos β‘ 2 Ο 7 + i sin β‘ 2 Ο 7 ) ) ( x β ( cos β‘ 2 Ο 7 β i sin β‘ 2 Ο 7 ) ) β
( x β ( cos β‘ 4 Ο 7 + i sin β‘ 4 Ο 7 ) ) ( x β ( cos β‘ 4 Ο 7 β i sin β‘ 4 Ο 7 ) ) β
( x β ( cos β‘ 6 Ο 7 + i sin β‘ 6 Ο 7 ) ) ( x β ( cos β‘ 6 Ο 7 β i sin β‘ 6 Ο 7 ) ) = ( x 2 β ( 2 cos β‘ 2 Ο 7 ) x + 1 ) β
( x 2 β ( 2 cos β‘ 4 Ο 7 ) x + 1 ) β
( x 2 β ( 2 cos β‘ 6 Ο 7 ) x + 1 ) . \begin{aligned}
Q(x)= \left(x-\left(\cos \dfrac{2 \pi}{7}+i \sin \dfrac{2 \pi}{7}\right)\right)\left(x-\left(\cos \dfrac{2 \pi}{7}-i \sin \dfrac{2 \pi}{7}\right)\right) \\
\cdot\left(x-\left(\cos \dfrac{4 \pi}{7}+i \sin \dfrac{4 \pi}{7}\right)\right)\left(x-\left(\cos \dfrac{4 \pi}{7}-i \sin \dfrac{4 \pi}{7}\right)\right) \\
\cdot\left(x-\left(\cos \dfrac{6 \pi}{7}+i \sin \dfrac{6 \pi}{7}\right)\right)\left(x-\left(\cos \dfrac{6 \pi}{7}-i \sin \dfrac{6 \pi}{7}\right)\right) \\
= \left(x^{2}-\left(2 \cos \dfrac{2 \pi}{7}\right) x+1\right) \cdot\left(x^{2}-\left(2 \cos \dfrac{4 \pi}{7}\right) x+1\right) \\
\cdot\left(x^{2}-\left(2 \cos \dfrac{6 \pi}{7}\right) x+1\right) .
\end{aligned}
Q ( x ) = ( x β ( cos 7 2 Ο β + i sin 7 2 Ο β ) ) ( x β ( cos 7 2 Ο β β i sin 7 2 Ο β ) ) β
( x β ( cos 7 4 Ο β + i sin 7 4 Ο β ) ) ( x β ( cos 7 4 Ο β β i sin 7 4 Ο β ) ) β
( x β ( cos 7 6 Ο β + i sin 7 6 Ο β ) ) ( x β ( cos 7 6 Ο β β i sin 7 6 Ο β ) ) = ( x 2 β ( 2 cos 7 2 Ο β ) x + 1 ) β
( x 2 β ( 2 cos 7 4 Ο β ) x + 1 ) β
( x 2 β ( 2 cos 7 6 Ο β ) x + 1 ) . β
By expanding the last expression above for Q ( x ) Q(x)Q ( x ) , the coefficient of x 5 x^{5}x 5 in Q ( x ) Q(x)Q ( x ) is
1 = β 2 cos β‘ 2 Ο 7 β 2 cos β‘ 4 Ο 7 β 2 cos β‘ 6 Ο 7 . 1=-2 \cos \dfrac{2 \pi}{7}-2 \cos \dfrac{4 \pi}{7}-2 \cos \dfrac{6 \pi}{7} .
1 = β 2 cos 7 2 Ο β β 2 cos 7 4 Ο β β 2 cos 7 6 Ο β .
It then follows from (1) that a = 1 2 a=\dfrac{1}{2}a = 2 1 β . Similarly, the coefficient of x 4 x^{4}x 4 in Q ( x ) Q(x)Q ( x ) is
1 = 3 + 4 ( cos β‘ 2 Ο 7 cos β‘ 4 Ο 7 + cos β‘ 4 Ο 7 cos β‘ 6 Ο 7 + cos β‘ 6 Ο 7 cos β‘ 2 Ο 7 ) 1=3+4\left(\cos \dfrac{2 \pi}{7} \cos \dfrac{4 \pi}{7}+\cos \dfrac{4 \pi}{7} \cos \dfrac{6 \pi}{7}+\cos \dfrac{6 \pi}{7} \cos \dfrac{2 \pi}{7}\right)
1 = 3 + 4 ( cos 7 2 Ο β cos 7 4 Ο β + cos 7 4 Ο β cos 7 6 Ο β + cos 7 6 Ο β cos 7 2 Ο β )
and it follows from (2) that b = β 1 2 b=-\dfrac{1}{2}b = β 2 1 β . Once more expanding (4) and using (3) gives the coefficient of x 3 x^{3}x 3 in Q ( x ) Q(x)Q ( x ) :
1 = β 4 ( cos β‘ 2 Ο 7 + cos β‘ 4 Ο 7 + cos β‘ 6 Ο 7 ) β 8 cos β‘ 2 Ο 7 cos β‘ 4 Ο 7 cos β‘ 6 Ο 7 = 4 a + 8 c . 1=-4\left(\cos \dfrac{2 \pi}{7}+\cos \dfrac{4 \pi}{7}+\cos \dfrac{6 \pi}{7}\right)-8 \cos \dfrac{2 \pi}{7} \cos \dfrac{4 \pi}{7} \cos \dfrac{6 \pi}{7}=4 a+8 c .
1 = β 4 ( cos 7 2 Ο β + cos 7 4 Ο β + cos 7 6 Ο β ) β 8 cos 7 2 Ο β cos 7 4 Ο β cos 7 6 Ο β = 4 a + 8 c .
Thus c = β 1 8 c=-\dfrac{1}{8}c = β 8 1 β . The requested product is a b c = 1 2 ( β 1 2 ) ( β 1 8 ) = 1 32 a b c=\dfrac{1}{2}\left(-\dfrac{1}{2}\right)\left(-\dfrac{1}{8}\right)= \boxed{\dfrac{1}{32}}a b c = 2 1 β ( β 2 1 β ) ( β 8 1 β ) = 3 2 1 β β .
OR
Applying the identity cos β‘ A cos β‘ B = 1 2 ( cos β‘ ( A + B ) + cos β‘ ( A β B ) ) \cos A \cos B=\dfrac{1}{2}(\cos (A+B)+\cos (A-B))cos A cos B = 2 1 β ( cos ( A + B ) + cos ( A β B ) ) to the expressions for a , b a, ba , b , and c cc from the first solution gives
b = cos β‘ 2 Ο 7 cos β‘ 4 Ο 7 + cos β‘ 2 Ο 7 cos β‘ 6 Ο 7 + cos β‘ 4 Ο 7 cos β‘ 6 Ο 7 = 1 2 ( cos β‘ 6 Ο 7 + cos β‘ 2 Ο 7 ) + 1 2 ( cos β‘ 8 Ο 7 + cos β‘ 4 Ο 7 ) + 1 2 ( cos β‘ 10 Ο 7 + cos β‘ 2 Ο 7 ) = 1 2 ( cos β‘ 6 Ο 7 + cos β‘ 2 Ο 7 ) + 1 2 ( cos β‘ 6 Ο 7 + cos β‘ 4 Ο 7 ) + 1 2 ( cos β‘ 4 Ο 7 + cos β‘ 2 Ο 7 ) = β a \begin{aligned}
b =\cos \dfrac{2 \pi}{7} \cos \dfrac{4 \pi}{7}+\cos \dfrac{2 \pi}{7} \cos \dfrac{6 \pi}{7}+\cos \dfrac{4 \pi}{7} \cos \dfrac{6 \pi}{7} \\
=\dfrac{1}{2}\left(\cos \dfrac{6 \pi}{7}+\cos \dfrac{2 \pi}{7}\right)+\dfrac{1}{2}\left(\cos \dfrac{8 \pi}{7}+\cos \dfrac{4 \pi}{7}\right)+\dfrac{1}{2}\left(\cos \dfrac{10 \pi}{7}+\cos \dfrac{2 \pi}{7}\right) \\
=\dfrac{1}{2}\left(\cos \dfrac{6 \pi}{7}+\cos \dfrac{2 \pi}{7}\right)+\dfrac{1}{2}\left(\cos \dfrac{6 \pi}{7}+\cos \dfrac{4 \pi}{7}\right)+\dfrac{1}{2}\left(\cos \dfrac{4 \pi}{7}+\cos \dfrac{2 \pi}{7}\right) \\
=-a
\end{aligned}
b = cos 7 2 Ο β cos 7 4 Ο β + cos 7 2 Ο β cos 7 6 Ο β + cos 7 4 Ο β cos 7 6 Ο β = 2 1 β ( cos 7 6 Ο β + cos 7 2 Ο β ) + 2 1 β ( cos 7 8 Ο β + cos 7 4 Ο β ) + 2 1 β ( cos 7 1 0 Ο β + cos 7 2 Ο β ) = 2 1 β ( cos 7 6 Ο β + cos 7 2 Ο β ) + 2 1 β ( cos 7 6 Ο β + cos 7 4 Ο β ) + 2 1 β ( cos 7 4 Ο β + cos 7 2 Ο β ) = β a β
and
c = β cos β‘ 2 Ο 7 cos β‘ 4 Ο 7 cos β‘ 6 Ο 7 = β 1 2 ( cos β‘ 6 Ο 7 + cos β‘ 2 Ο 7 ) cos β‘ 6 Ο 7 = β 1 2 2 6 Ο 7 β 1 4 ( cos β‘ 8 Ο 7 + cos β‘ 4 Ο 7 ) = β 1 4 ( 1 + cos β‘ 12 Ο 7 ) β 1 4 ( cos β‘ 6 Ο 7 + cos β‘ 4 Ο 7 ) = 1 4 ( a β 1 ) . \begin{aligned}
c =-\cos \dfrac{2 \pi}{7} \cos \dfrac{4 \pi}{7} \cos \dfrac{6 \pi}{7} \\
=-\dfrac{1}{2}\left(\cos \dfrac{6 \pi}{7}+\cos \dfrac{2 \pi}{7}\right) \cos \dfrac{6 \pi}{7} \\
=-\dfrac{1}{2} \cos ^{2} \dfrac{6 \pi}{7}-\dfrac{1}{4}\left(\cos \dfrac{8 \pi}{7}+\cos \dfrac{4 \pi}{7}\right) \\
=-\dfrac{1}{4}\left(1+\cos \dfrac{12 \pi}{7}\right)-\dfrac{1}{4}\left(\cos \dfrac{6 \pi}{7}+\cos \dfrac{4 \pi}{7}\right) \\
=\dfrac{1}{4}(a-1) .
\end{aligned}
c = β cos 7 2 Ο β cos 7 4 Ο β cos 7 6 Ο β = β 2 1 β ( cos 7 6 Ο β + cos 7 2 Ο β ) cos 7 6 Ο β = β 2 1 β cos 2 7 6 Ο β β 4 1 β ( cos 7 8 Ο β + cos 7 4 Ο β ) = β 4 1 β ( 1 + cos 7 1 2 Ο β ) β 4 1 β ( cos 7 6 Ο β + cos 7 4 Ο β ) = 4 1 β ( a β 1 ) . β
To compute a aa , use a double angle identity to obtain
cos β‘ 6 Ο 7 = cos β‘ 8 Ο 7 = 2 2 4 Ο 7 β 1 cos β‘ 2 Ο 7 = cos β‘ 16 Ο 7 = 2 2 8 Ο 7 β 1 = 2 2 6 Ο 7 β 1 cos β‘ 4 Ο 7 = 2 2 2 Ο 7 β 1 \begin{aligned}
\cos \dfrac{6 \pi}{7}=\cos \dfrac{8 \pi}{7}=2 \cos ^{2} \dfrac{4 \pi}{7}-1 \\
\cos \dfrac{2 \pi}{7}=\cos \dfrac{16 \pi}{7}=2 \cos ^{2} \dfrac{8 \pi}{7}-1=2 \cos ^{2} \dfrac{6 \pi}{7}-1 \\
\cos \dfrac{4 \pi}{7}=2 \cos ^{2} \dfrac{2 \pi}{7}-1
\end{aligned}
cos 7 6 Ο β = cos 7 8 Ο β = 2 cos 2 7 4 Ο β β 1 cos 7 2 Ο β = cos 7 1 6 Ο β = 2 cos 2 7 8 Ο β β 1 = 2 cos 2 7 6 Ο β β 1 cos 7 4 Ο β = 2 cos 2 7 2 Ο β β 1 β
Then
β a = 2 ( 2 4 Ο 7 + 2 6 Ο 7 + 2 2 Ο 7 ) β 3 = 2 ( a 2 β 2 b ) β 3 = 2 ( a 2 + 2 a ) β 3. \begin{aligned}
-a =2\left(\cos ^{2} \dfrac{4 \pi}{7}+\cos ^{2} \dfrac{6 \pi}{7}+\cos ^{2} \dfrac{2 \pi}{7}\right)-3 \\
=2\left(a^{2}-2 b\right)-3=2\left(a^{2}+2 a\right)-3 .
\end{aligned}
β a = 2 ( cos 2 7 4 Ο β + cos 2 7 6 Ο β + cos 2 7 2 Ο β ) β 3 = 2 ( a 2 β 2 b ) β 3 = 2 ( a 2 + 2 a ) β 3 . β
So 2 a 2 + 5 a β 3 = 0 2 a^{2}+5 a-3=02 a 2 + 5 a β 3 = 0 , from which it follows that a = 1 2 a=\dfrac{1}{2}a = 2 1 β or a = β 3 a=-3a = β 3 . However, β 3 < a < 3 -3<a<3β 3 < a < 3 , so a = 1 2 , b = β 1 2 a=\dfrac{1}{2}, b=-\dfrac{1}{2}a = 2 1 β , b = β 2 1 β , c = β 1 8 c=-\dfrac{1}{8}c = β 8 1 β , and a b c = 1 32 a b c= \boxed{\dfrac{1}{32}}a b c = 3 2 1 β β .
The problems on this page are the property of the MAA's American Mathematics Competitions