Problem:
Let A B C D A B C DA B C D be a rectangle and let D M DMD M be a segment perpendicular to the plane of A B C D A B C DA B C D . Suppose that D M DMD M has integer length, and the lengths of M A , M C MA,MCM A , M C , and M B MBM B are consecutive odd positive integers (in this order). What is the volume of pyramid M A B C D M A B C DM A B C D ?
Answer Choices:
A. 24 5 24 \sqrt{5}2 4 5 β
B. 60 606 0
C. 28 5 28 \sqrt{5}2 8 5 β
D. 66 666 6
E. 8 70 8 \sqrt{70}8 7 0 β
Solution:
Let M A = a MA=aM A = a and M D = d M D=dM D = d . It follows that M C = a + 2 M C=a+2M C = a + 2 and M B = a + 4 M B=a+4M B = a + 4 .
As shown below, note that β³ M A D \triangle M A Dβ³ M A D and β³ M B C \triangle M B Cβ³ M B C are both right triangles.
By the Pythagorean Theorem, we have
A D 2 = M A 2 β M D 2 = a 2 β d 2 B C 2 = M B 2 β M C 2 = ( a + 4 ) 2 β ( a + 2 ) 2 \begin{aligned}
A D^{2} &=M A^{2}-M D^{2}=a^{2}-d^{2} \\
B C^{2} &=M B^{2}-M C^{2}=(a+4)^{2}-(a+2)^{2}
\end{aligned}
A D 2 B C 2 β = M A 2 β M D 2 = a 2 β d 2 = M B 2 β M C 2 = ( a + 4 ) 2 β ( a + 2 ) 2 β
Since A D = B C A D=B CA D = B C in rectangle A B C D A B C DA B C D , we equate the expressions for A D 2 A D^{2}A D 2 and B C 2 B C^{2}B C 2 , then rearrange and factor:
a 2 β d 2 = ( a + 4 ) 2 β ( a + 2 ) 2 a 2 β d 2 = 4 a + 12 a 2 β 4 a β d 2 = 12 ( a β 2 ) 2 β d 2 = 16 ( a + d β 2 ) ( a β d β 2 ) = 16 \begin{aligned}
a^{2}-d^{2} &=(a+4)^{2}-(a+2)^{2} \\
a^{2}-d^{2} &=4 a+12 \\
a^{2}-4 a-d^{2} &=12 \\
(a-2)^{2}-d^{2} &=16 \\
(a+d-2)(a-d-2) &=16
\end{aligned}
a 2 β d 2 a 2 β d 2 a 2 β 4 a β d 2 ( a β 2 ) 2 β d 2 ( a + d β 2 ) ( a β d β 2 ) β = ( a + 4 ) 2 β ( a + 2 ) 2 = 4 a + 1 2 = 1 2 = 1 6 = 1 6 β
As a + d β 2 a+d-2a + d β 2 and a β d β 2 a-d-2a β d β 2 have the same parity, we get a + d β 2 = 8 a+d-2=8a + d β 2 = 8 and a β d β 2 = 2 a-d-2=2a β d β 2 = 2 , from which ( a , d ) = ( 7 , 3 ) (a, d)=(7,3)( a , d ) = ( 7 , 3 ) . Applying the Pythagorean Theorem to right β³ M A D \triangle M A Dβ³ M A D and right β³ M C D \triangle M C Dβ³ M C D , we obtain A D = 2 10 A D=2 \sqrt{10}A D = 2 1 0 β and C D = C D=C D = 6 2 6 \sqrt{2}6 2 β , respectively.
Together, the volume of pyramid M A B C D M A B C DM A B C D is
1 3 β
[ A B C D ] β
M D = 1 3 β
( A D β
C D ) β
M D = (A) 24 5 \dfrac{1}{3} \cdot[A B C D] \cdot M D=\dfrac{1}{3} \cdot(A D \cdot C D) \cdot M D=\boxed{\text{(A) }24 \sqrt{5}}
3 1 β β
[ A B C D ] β
M D = 3 1 β β
( A D β
C D ) β
M D = (A) 2 4 5 β β
OR \textbf{OR}
OR
Let A D = b , C D = a , M D = x , M C = t A D=b, C D=a, M D=x, M C=tA D = b , C D = a , M D = x , M C = t . It follows that M A = t β 2 M A=t-2M A = t β 2 and M B = t + 2 M B=t+2M B = t + 2 .
We have three equations:
a 2 + x 2 = t 2 a 2 + b 2 + x 2 = t 2 + 4 t + 4 b 2 + x 2 = t 2 β 4 t + 4 \begin{aligned}
a^{2}+x^{2} &=t^{2} \\
a^{2}+b^{2}+x^{2} &=t^{2}+4 t+4 \\
b^{2}+x^{2} &=t^{2}-4 t+4
\end{aligned}
a 2 + x 2 a 2 + b 2 + x 2 b 2 + x 2 β = t 2 = t 2 + 4 t + 4 = t 2 β 4 t + 4 β
Substituting the first and third equations into the second equation, we get:
t 2 β 8 t β x 2 = 0 ( t β 4 ) 2 β x 2 = 16 ( t β 4 β x ) ( t β 4 + x ) = 16 \begin{aligned}
t^{2}-8 t-x^{2} &=0 \\
(t-4)^{2}-x^{2} &=16 \\
(t-4-x)(t-4+x) &=16
\end{aligned}
t 2 β 8 t β x 2 ( t β 4 ) 2 β x 2 ( t β 4 β x ) ( t β 4 + x ) β = 0 = 1 6 = 1 6 β
Therefore, we have t = 9 t=9t = 9 and x = 3 x=3x = 3 .
Solving for other values, we get b = 2 10 , a = 6 2 b=2 \sqrt{10}, a=6 \sqrt{2}b = 2 1 0 β , a = 6 2 β . The volume is then
1 3 a b x = (A) 24 5 \frac{1}{3}abx=\boxed{\text{(A) }24\sqrt{5}}
3 1 β a b x = (A) 2 4 5 β β
The problems on this page are the property of the MAA's American Mathematics Competitions