Problem:
Let Q ( z ) Q(z)Q ( z ) and R ( z ) R(z)R ( z ) be the unique polynomials such that
z 2021 + 1 = ( z 2 + z + 1 ) Q ( z ) + R ( z ) z^{2021}+1=\left(z^{2}+z+1\right) Q(z)+R(z)
z 2 0 2 1 + 1 = ( z 2 + z + 1 ) Q ( z ) + R ( z )
and the degree of R RR is less than 2 . What is R ( z ) R(z)R ( z ) ?
Answer Choices:
A. β z -zβ z
B. β 1 -1β 1
C. 2021 20212 0 2 1
D. z + 1 z+1z + 1
E. 2 z + 1 2 z+12 z + 1
Solution:
Answer (A): Note that
z n + 3 + 1 β ( z n + 1 ) = z n ( z 3 β 1 ) = z n ( z β 1 ) ( z 2 + z + 1 ) . z^{n+3}+1-\left(z^{n}+1\right)=z^{n}\left(z^{3}-1\right)=z^{n}(z-1)\left(z^{2}+z+1\right) .
z n + 3 + 1 β ( z n + 1 ) = z n ( z 3 β 1 ) = z n ( z β 1 ) ( z 2 + z + 1 ) .
Therefore z n + 3 + 1 z^{n+3}+1z n + 3 + 1 and z n + 1 z^{n}+1z n + 1 leave the same remainder when divided by z 2 + z + 1 z^{2}+z+1z 2 + z + 1 . Because 2021 β‘ 2 ( β β 3 ) 2021 \equiv 2(\bmod 3)2 0 2 1 β‘ 2 ( m o d 3 ) , the remainder when z 2021 + 1 z^{2021}+1z 2 0 2 1 + 1 is divided by z 2 + z + 1 z^{2}+z+1z 2 + z + 1 is the same as the remainder when z 2 + 1 z^{2}+1z 2 + 1 is divided by z 2 + z + 1 z^{2}+z+1z 2 + z + 1 , namely β z -zβ z .
OR
The solutions of z 2 + z + 1 = 0 z^{2}+z+1=0z 2 + z + 1 = 0 are z = β 1 Β± i 3 2 z=\frac{-1 \pm i \sqrt{3}}{2}z = 2 β 1 Β± i 3 β β . Therefore
R ( β 1 + i 3 2 ) = R ( cis β‘ 2 Ο 3 ) = ( cis β‘ 2 Ο 3 ) 2021 + 1 = ( cis β‘ 4042 Ο 3 ) + 1 = ( cis β‘ 4 Ο 3 ) + 1 = 1 β i 3 2 \begin{aligned}
R\left(\frac{-1+i \sqrt{3}}{2}\right) & =R\left(\operatorname{cis} \frac{2 \pi}{3}\right) \\
& =\left(\operatorname{cis} \frac{2 \pi}{3}\right)^{2021}+1 \\
& =\left(\operatorname{cis} \frac{4042 \pi}{3}\right)+1 \\
& =\left(\operatorname{cis} \frac{4 \pi}{3}\right)+1 \\
& =\frac{1-i \sqrt{3}}{2}
\end{aligned}
R ( 2 β 1 + i 3 β β ) β = R ( c i s 3 2 Ο β ) = ( c i s 3 2 Ο β ) 2 0 2 1 + 1 = ( c i s 3 4 0 4 2 Ο β ) + 1 = ( c i s 3 4 Ο β ) + 1 = 2 1 β i 3 β β β
and
R ( β 1 β i 3 2 ) = R ( cis β‘ 4 Ο 3 ) = ( cis β‘ 4 Ο 3 ) 2021 + 1 = ( cis β‘ 8084 Ο 3 ) + 1 = ( cis β‘ 2 Ο 3 ) + 1 = 1 + i 3 2 . \begin{aligned}
R\left(\frac{-1-i \sqrt{3}}{2}\right) & =R\left(\operatorname{cis} \frac{4 \pi}{3}\right) \\
& =\left(\operatorname{cis} \frac{4 \pi}{3}\right)^{2021}+1 \\
& =\left(\operatorname{cis} \frac{8084 \pi}{3}\right)+1 \\
& =\left(\operatorname{cis} \frac{2 \pi}{3}\right)+1 \\
& =\frac{1+i \sqrt{3}}{2} .
\end{aligned}
R ( 2 β 1 β i 3 β β ) β = R ( c i s 3 4 Ο β ) = ( c i s 3 4 Ο β ) 2 0 2 1 + 1 = ( c i s 3 8 0 8 4 Ο β ) + 1 = ( c i s 3 2 Ο β ) + 1 = 2 1 + i 3 β β . β
Because R ( z ) R(z)R ( z ) is linear and R ( z ) = β z R(z)=-zR ( z ) = β z for each of the solutions of z 2 + z + 1 = 0 z^{2}+z+1=0z 2 + z + 1 = 0 , it follows that R ( z ) = β z R(z)=-zR ( z ) = β z .
The problems on this page are the property of the MAA's American Mathematics Competitions