Problem:
What is the value of
log40β2log2β80ββlog20β2log2β160β?
Answer Choices:
A. 0
B. 1
C. 45β
D. 2
E. log2β5
Solution:
Note that log40β2=log2β401β, and similarly log20β2=log2β201β
log40β2log2β80ββlog20β2log2β160ββ=log2β80β
log2β40βlog2β160β
log2β20=(log2β4+log2β20)(log2β2+log2β20)β(log2β8+log2β20)log2β20=(2+log2β20)(1+log2β20)β(3+log2β20)log2β20β
Expanding,
2+2log2β20+log2β20+(log2β20)2β3log2β20β(log2β20)2
All the log terms cancel, so the answer is (D) 2β .
The problems on this page are the property of the MAA's American Mathematics Competitions