Problem:
The graph of y = x 2 + 2 x β 15 y=x^{2}+2 x-15y = x 2 + 2 x β 1 5 intersects the x xx -axis at points A AA and C CC and the y yy -axis at point B BB . What is tan β‘ ( β A B C ) \tan (\angle A B C)tan ( β A B C ) ?
Answer Choices:
A. 1 7 \dfrac{1}{7}7 1 β
B. 1 4 \dfrac{1}{4}4 1 β
C. 3 7 \dfrac{3}{7}7 3 β
D. 1 2 \dfrac{1}{2}2 1 β
E. 4 7 \dfrac{4}{7}7 4 β
Solution:
Let O OO be the origin of the coordinate plane. Because the equation of the parabola can be written as y = ( x + 5 ) ( x β 3 ) y=(x+5)(x-3)y = ( x + 5 ) ( x β 3 ) , assume without loss of generality that A = ( β 5 , 0 ) A=(-5,0)A = ( β 5 , 0 ) and C = ( 3 , 0 ) C=(3,0)C = ( 3 , 0 ) . Point B BB is the y yy -intercept of the parabola, which is ( 0 , β 15 ) (0,-15)( 0 , β 1 5 ) . The altitude B O βΎ \overline{B O}B O splits β³ A B C \triangle A B Cβ³ A B C into two right triangles, one with legs 5 and 15 and one with legs 3 and 15 . Therefore
tan β‘ ( β A B C ) = tan β‘ ( β A B O + β O B C ) = tan β‘ ( β A B O ) + tan β‘ ( β O B C ) 1 β tan β‘ ( β A B O ) β
tan β‘ ( β O B C ) = 5 15 + 3 15 1 β 5 15 β
3 15 = 8 15 β 1 = ( E ) 4 7 . \begin{aligned}
\tan (\angle A B C) & =\tan (\angle A B O+\angle O B C) \\
& =\frac{\tan (\angle A B O)+\tan (\angle O B C)}{1-\tan (\angle A B O) \cdot \tan (\angle O B C)} \\
& =\frac{\frac{5}{15}+\frac{3}{15}}{1-\frac{5}{15} \cdot \frac{3}{15}}=\frac{8}{15-1}=(\text{E})\boxed{\frac{4}{7}} .
\end{aligned}
tan ( β A B C ) β = tan ( β A B O + β O B C ) = 1 β tan ( β A B O ) β
tan ( β O B C ) tan ( β A B O ) + tan ( β O B C ) β = 1 β 1 5 5 β β
1 5 3 β 1 5 5 β + 1 5 3 β β = 1 5 β 1 8 β = ( E ) 7 4 β β . β
OR \textbf{OR}
OR
With the notation as above,
A B = ( β 5 β 0 ) 2 + ( 0 β ( β 15 ) 2 = 250 , B C = ( 0 β 3 ) 2 + ( β 15 β 0 ) 2 = 234 , \begin{gathered}
A B=\sqrt{(-5-0)^{2}+\left(0-(-15)^{2}\right.}=\sqrt{250}, \\
B C=\sqrt{(0-3)^{2}+(-15-0)^{2}}=\sqrt{234},
\end{gathered}
A B = ( β 5 β 0 ) 2 + ( 0 β ( β 1 5 ) 2 β = 2 5 0 β , B C = ( 0 β 3 ) 2 + ( β 1 5 β 0 ) 2 β = 2 3 4 β , β
and A C = β£ β 5 β 3 β£ = 8 A C=|-5-3|=8A C = β£ β 5 β 3 β£ = 8 . By the Law of Cosines in β³ A B C \triangle A B Cβ³ A B C ,
cos β‘ ( β A B C ) = 250 + 234 β 64 2 β
250 β
234 = 7 65 . \cos (\angle A B C)=\frac{250+234-64}{2 \cdot \sqrt{250} \cdot \sqrt{234}}=\frac{7}{\sqrt{65}} .
cos ( β A B C ) = 2 β
2 5 0 β β
2 3 4 β 2 5 0 + 2 3 4 β 6 4 β = 6 5 β 7 β .
Therefore 2 ( β A B C ) = 49 65 \cos ^{2}(\angle A B C)=\frac{49}{65}cos 2 ( β A B C ) = 6 5 4 9 β and
2 ( β A B C ) = 1 β 2 ( β A B C ) = 16 65 \sin ^{2}(\angle A B C)=1-\cos ^{2}(\angle A B C)=\frac{16}{65}
sin 2 ( β A B C ) = 1 β cos 2 ( β A B C ) = 6 5 1 6 β
so 2 ( β A B C ) = 16 49 \tan ^{2}(\angle A B C)=\frac{16}{49}tan 2 ( β A B C ) = 4 9 1 6 β . Because β A B C \angle A B Cβ A B C is acute, its tangent is 16 49 = ( E ) 4 7 \sqrt{\frac{16}{49}}=(\text{E})\boxed{\frac{4}{7}}4 9 1 6 β β = ( E ) 7 4 β β .
The problems on this page are the property of the MAA's American Mathematics Competitions