Problem:
What is the value of
23β13+43β33+63β53+β―+183β173?
Answer Choices:
A. 2023
B. 2679
C. 2941
D. 3159
E. 3235
Solution:
The formula for the sum of the first n cubes is useful here:
13+23+33+β―+n3=(2n(n+1)β)2
Therefore
23+43+63+β―+183=8(13+23+33+β―+93)=8β
452=16,200
Also,
13+33+53+ββ―+173=(13+23+33+β―+173)β(23+43+63+β―+163)=(17β
9)2β8β
362=23,409β10,368=13,041β
The requested value is 16,200β13,041=(D)3159β.
OR
Recall the formulas for the sum of the first n positive integers and for the sum of the first n squares:
1+2+3+β―+n=2n(n+1)β
and
12+22+32+β―+n2=6n(n+1)(2n+1)β
In summation notation the given expression is
n=1β9β((2n)3β(2nβ1)3)β=n=1β9β(8n3β(8n3β12n2+6nβ1))=n=1β9β(12n2β6n+1)=12β
69β
10β
19ββ6β
29β
10β+9=3420β270+9=(D)3159ββ
The problems on this page are the property of the MAA's American Mathematics Competitions