Problem:
There is a unique sequence of integers a1β,a2β,a3β,β¦,a2023β such that
tan2023x=1+a2βtan2x+a4βtan4x+β―+a2022βtan2022xa1βtanx+a3βtan3x+a5βtan5x+β―+a2023βtan2023xβ
whenever tan2023x is defined. What is a2023β?
Answer Choices:
A. β2023
B. β2022
C. β1
D. 1
E. 2023
Solution:
By de Moivre's Formula and the Binomial Theorem,
cosnx+isinnx==β(cosx+isinx)ncosnxβ+i(1nβ)cosnβ1xβ
sinx+i2(2nβ)cosnβ2xβ
sin2x.
By equating the real and imaginary parts of the respective sides above, it follows that for odd n,
cosnx=cosnxβ(2nβ)cosnβ2xβ
sin2x+(4nβ)cosnβ4xβ
sin4xββ―Β±(nβ1nβ)cosxβ
sinnβ1x
=Cnβ(cosx,sinx)
and
sinnxβ=(1nβ)cosnβ1xβ
sinxβ(3nβ)cosnβ3xβ
sin3x+β―Β±sinnx=Snβ(cosx,sinx),β
where Cnβ(u,v) and Snβ(u,v) are homogeneous polynomials of degree n. (A homogeneous polynomial is a polynomial for which all terms have the same total degree.) Hence
tannx=Cnβ(cosx,sinx)Snβ(cosx,sinx)β.
By dividing the numerator and denominator above by cosnx, it follows that
tannx=Cnβ(1,tanx)Snβ(1,tanx)β.
The general term in Snβ(u,v) has the form
(β1)k(2k+1nβ)unβ2kβ1v2k+1,
so with n=2023, the last term occurs when k=1011. Hence the last term of Snβ(1,tanx) is β1(20232023β)v2023, and thus a2023β=(C)β1β.
The problems on this page are the property of the MAA's American Mathematics Competitions