Problem:
The roots of x3+2x2βx+3 are p,q, and r. What is the value of
(p2+4)(q2+4)(r2+4)?
Answer Choices:
A. 64
B. 75
C. 100
D. 125
E. 144
Solution:
By Vieta's Formulas,
p+q+rpq+pr+qrpqrβ=β2=β1, and =β3β
The expression to be evaluated is
(p2+4)(q2+4)(r2+4)=p2q2r2+4(p2q2+p2r2+q2r2)+16(p2+q2+r2)+64
The first term is
p2q2r2=(pqr)2=(β3)2=9
To find the second term, note that
(pq+pr+qr)2=p2q2+p2r2+q2r2+2pqr(p+q+r)
Rearranging and substituting yields
p2q2+p2r2+q2r2=(β1)2β2(β3)(β2)=β11
For the third term,
(p+q+r)2=p2+q2+r2+2(pq+pr+qr)
so
p2+q2+r2=(β2)2β2(β1)=6
Therefore
(p2+4)(q2+4)(r2+4)=9+4β
(β11)+16β
6+64=125
With i=β1β, the given expression can be factored as
(p2+4)(q2+4)(r2+4)β=(pβ2i)(p+2i)(qβ2i)(q+2i)(rβ2i)(r+2i)=[(pβ2i)(qβ2i)(rβ2i)]β
[(p+2i)(q+2i)(r+2i)]β
Let f(x) be the given polynomial. Then f(x)=β(pβx)(qβx)(rβx) and
βf(2i)=(pβ2i)(qβ2i)(rβ2i)
which is the first bracketed expression above. Furthermore
f(βx)=(βxβp)(βxβq)(βxβr)=β(p+x)(q+x)(r+x)
Therefore
βf(βx)=(p+x)(q+x)(r+x)
It follows that
βf(β2i)=(p+2i)(q+2i)(r+2i)
the second bracketed expression above. Hence
(p2+4)(q2+4)(r2+4)=βf(2i)β
(βf(β2i))=f(2i)β
f(β2i).
Because
f(2i)=(2i)3+2(2i)2β(2i)+3=β8iβ8β2i+3=β10iβ5
and
f(β2i)=(β2i)3+2(β2i)2β(β2i)+3=8iβ8+2i+3=10iβ5,
the requested product is
f(2i)β
f(β2i)=(β10iβ5)(10iβ5)=(D)125β.
Note: The roots of the polynomial are approximately β2.757,0.379+0.972i, and 0.379β0.972i.
The problems on this page are the property of the MAA's American Mathematics Competitions