Problem:
Triangle β³ A B C \triangle ABCβ³ A B C has side lengths A B = 80 AB=80A B = 8 0 , B C = 45 BC=45B C = 4 5 , and A C = 75 AC=75A C = 7 5 . The bisector of β B \angle Bβ B and the altitude to side A B βΎ \overline{AB}A B intersect at point P PP . What is B P ? BP?B P ?
Answer Choices:
A. 18 181 8
B. 19 191 9
C. 20 202 0
D. 21 212 1
E. 22 222 2
Solution:
Let D DD be the foot of the altitude from C CC to A B βΎ \overline{AB}A B , and let P PP be the intersection of B D BDB D (the bisector of β B \angle Bβ B ) with C D βΎ \overline{CD}C D . We find A D ADA D and B D BDB D using the Pythagorean theorem.
From right triangles A D C ADCA D C and B D C BDCB D C ,
A C 2 = A D 2 + C D 2 , AC^{2}=AD^{2}+CD^{2},
A C 2 = A D 2 + C D 2 ,
B C 2 = B D 2 + C D 2 . BC^{2}=BD^{2}+CD^{2}.
B C 2 = B D 2 + C D 2 .
From above, we get:
A C 2 β B C 2 = A D 2 β B D 2 = ( A D β B D ) ( A D + B D ) . AC^{2}-BC^{2}=AD^{2}-BD^{2}=(AD-BD)(AD+BD).
A C 2 β B C 2 = A D 2 β B D 2 = ( A D β B D ) ( A D + B D ) .
A D + B D = A B = 80 , A C = 75 , β B C = 45 , β
β βΉ β
β ( 7 5 2 β 4 5 2 ) = 80 ( A D β B D ) β
β βΉ β
β ( 75 β 45 ) ( 75 + 45 ) = 80 ( A D β B D ) β
β βΉ β
β 30 β
120 = 80 ( A D β B D ) β
β βΉ β
β A D β B D = 45. \begin{aligned}
AD+BD=AB=80, AC=75, \, BC=45,&\implies (75^{2}-45^{2})=80(AD-BD)\\
&\implies (75-45)(75+45)=80(AD-BD)\\
&\implies 30\cdot120=80(AD-BD)\\
&\implies AD-BD=45.\\
\end{aligned}
A D + B D = A B = 8 0 , A C = 7 5 , B C = 4 5 , β βΉ ( 7 5 2 β 4 5 2 ) = 8 0 ( A D β B D ) βΉ ( 7 5 β 4 5 ) ( 7 5 + 4 5 ) = 8 0 ( A D β B D ) βΉ 3 0 β
1 2 0 = 8 0 ( A D β B D ) βΉ A D β B D = 4 5 . β
Solving
{ A D + B D = 80 , A D β B D = 45 , \begin{cases}
AD+BD=80,\\
AD-BD=45,
\end{cases}
{ A D + B D = 8 0 , A D β B D = 4 5 , β
we get
A D = 125 2 , β
β B D = 35 2 . AD=\dfrac{125}{2}, \; BD=\dfrac{35}{2}.
A D = 2 1 2 5 β , B D = 2 3 5 β .
We find C D CDC D by applying the Pythagorean theorem in β³ B D C \triangle BDCβ³ B D C .
C D = B C 2 β B D 2 = 4 5 2 β ( 35 2 ) 2 = 6875 4 = 25 2 11 . CD=\sqrt{BC^{2}-BD^{2}}
=\sqrt{45^{2}-\left(\dfrac{35}{2}\right)^{2}}
=\sqrt{\dfrac{6875}{4}}
=\dfrac{25}{2}\sqrt{11}.C D = B C 2 β B D 2 β = 4 5 2 β ( 2 3 5 β ) 2 β = 4 6 8 7 5 β β = 2 2 5 β 1 1 β .
We use the Angle Bisector Theorem in β³ B C D \triangle BCDβ³ B C D to find D P DPD P . Since B P BPB P bisects β B \angle Bβ B ,
D P P C = B D B C = 35 2 45 = 7 18 β
β β β
β D P = 7 25 β C D . \dfrac{DP}{PC}=\dfrac{BD}{BC}
=\dfrac{\dfrac{35}{2}}{45}
=\dfrac{7}{18}
\;\Rightarrow\;
DP=\dfrac{7}{25} \, CD.
P C D P β = B C B D β = 4 5 2 3 5 β β = 1 8 7 β β D P = 2 5 7 β C D .
Hence,
D P = 7 25 β
25 2 11 = 7 11 2 . DP=\dfrac{7}{25}\cdot \dfrac{25}{2}\sqrt{11}
=\dfrac{7\sqrt{11}}{2}.
D P = 2 5 7 β β
2 2 5 β 1 1 β = 2 7 1 1 β β .
Now, we can again use the Pythagorean Theorem in β³ B D P \triangle BDPβ³ B D P to find B P BPB P .
B P 2 = B D 2 + D P 2 = ( 35 2 ) 2 + ( 7 11 2 ) 2 = 1225 4 + 539 4 = 1764 4 = 441. BP^{2}=BD^{2}+DP^{2}
=\left(\dfrac{35}{2}\right)^{2}+\left(\dfrac{7\sqrt{11}}{2}\right)^{2}
=\dfrac{1225}{4}+\dfrac{539}{4}
=\dfrac{1764}{4}=441.
B P 2 = B D 2 + D P 2 = ( 2 3 5 β ) 2 + ( 2 7 1 1 β β ) 2 = 4 1 2 2 5 β + 4 5 3 9 β = 4 1 7 6 4 β = 4 4 1 .
so B P = (D) 21 BP={\boxed{\textbf{(D)~21}}}B P = (D) 21 β
The problems on this page are the property of the MAA's American Mathematics Competitions