Problem:
Let a,b,c be the roots of x3+kx+1. What is
a3b2+a2b3+b3c2+b2c3+c3a2+c2a3?
Answer Choices:
A. βk
B. βk+1
C. 1
D. kβ1
E. k
Solution:
We have a+b+c=0, abc=β1 and ab+bc+ac=k from Vietaβs Formulas. Factoring adjacent terms, we get the expression equals:
a2b2(a+b)+b2c2(b+c)+a2c2(a+c)
=a2b2(βc)+b2c2(βa)+a2c2(βb)
=βabc(ab+bc+ac)=(E) kβ
Remark. The full factorization of the given sum is
βa3b2+a2b3+b3c2+b2c3+c3a2+c2a3=(ab+bc+ca)2(a+b+c)β2abc(a+b+c)2βabc(ab+bc+ca)β
In the given problem, the first two terms cancel out as a+b+c=0.
The problems on this page are the property of the MAA's American Mathematics Competitions