Problem:
1β2+3β4+5β6+7β8+910β9+8β7+6β5+4β3+2β1β=
Answer Choices:
A. β1
B. 1
C. 5
D. 9
E. 10
Solution:
Group the numerator in pairs from the left, and group the denominator in pairs from the left:
Hence, the answer is 4(β1)+95(1)β=55β=1
OR
Regroup the numerator and denominator into positive and negative terms,
(1+3+5+7+9)β(2+4+6+8)(10+8+6+4+2)β(9+7+5+3+1)β=25β2030β25β=55β=1.
Answer: Bβ.
The problems on this page are the property of the MAA's American Mathematics Competitions