Problem:
What is the value of 1+3+5+...+2017+2019β2β4β6β...2016β2018?
Answer Choices:
A. β1010 
B. β1009 
C. 1008 
D. 1009 
E. 1010 
Solution:
The Expression can be written as
1+(3β2)+(5β4)+(7β6)+...+(2019β2018)=1+22018β=1010.
Answer: Eβ.