Problem:
What is the value of 1+3+5+...+2017+2019β2β4β6β...2016β2018?
Answer Choices:
A. β1010
B. β1009
C. 1008
D. 1009
E. 1010
Solution:
The Expression can be written as
1+(3β2)+(5β4)+(7β6)+...+(2019β2018)=1+22018β=1010.
Answer: Eβ.