Problem: Given: x>0,y>0,x>yx>0, y>0, x>yx>0,y>0,x>y and z≠0z \neq 0zî€ =0. The inequality which is not always correct is:
Answer Choices:
A. x+z>y+zx+z>y+zx+z>y+z
B. x−z>y−zx-z>y-zx−z>y−z
C. xz>yzx z>y zxz>yz
D. xz2>yz2\dfrac{x}{z^{2}}>\dfrac{y}{z^{2}}z2x​>z2y​
E. xz2>yz2x z^{2}>y z^{2}xz2>yz2 Solution:
(C) is not always correct since, if zzz is negative, xz<yzx z<y zxz<yz.