Problem: The function x2+px+qx^{2}+p x+qx2+px+q with ppp and qqq greater than zero has its minimum value when:
Answer Choices:
A. x=−px=-px=−p
B. x=p2x=\dfrac{p}{2}x=2p​
C. x=−2px=-2 px=−2p
D. x=p24qx=\dfrac{p^{2}}{4 q}x=4qp2​
E. x=−p2x=\dfrac{-p}{2}x=2−p​ Solution:
The minimum value of the function is at the turning point of the graph where x=−p/2x=-p / 2x=−p/2.