Problem: If xxx is greater than zero, then the correct relationship is:
Answer Choices:
A. log(1+x)=x/(1+x)\log (1+x)=x /(1+x)log(1+x)=x/(1+x)
B. log(1+x)<x/(1+x)\log (1+x)<x /(1+x)log(1+x)<x/(1+x)
C. log(1+x)>x\log (1+x)>xlog(1+x)>x
D. log(1+x)<x\log (1+x)<xlog(1+x)<x
E. none of these Solution:
For all x>0,1+x<10x.∴log(1+x)<xx>0,1+x<10^{x} . \quad \therefore \log (1+x)<xx>0,1+x<10x.∴log(1+x)<x.