Problem: If 10(x2−3x+6)=1\log _{10}\left(x^{2}-3x+6\right)=1log10​(x2−3x+6)=1, the value of xxx is
Answer Choices:
A. 101010 or 222
B. 444 or −2-2−2
C. 3∩r−13 \cap r-13∩r−1
D. 444 or −1-1−1
E. none of these Solution:
x2−3x+6=101=10x^{2}-3 x+6=10^{1}=10x2−3x+6=101=10 or x2−3x−4=0;∴x=4x^{2}-3 x-4=0 ; \quad \therefore x=4x2−3x−4=0;∴x=4 or −1-1−1