Problem: log125\log 125log125 equals:
Answer Choices:
A. 100log1.25100 \log 1.25100log1.25 B. 5log35 \log 35log3 C. 3log253 \log 253log25 D. 3−3log23-3 \log 23−3log2 E. (log25)(log5)(\log 25)(\log 5)(log25)(log5)
Solution:
log125=log(1000/8)=log1000−log8=3−log23=3−3log2\log 125=\log (1000 / 8)=\log 1000-\log 8=3-\log 2^{3}=3-3 \log 2log125=log(1000/8)=log1000−log8=3−log23=3−3log2.