Problem: The logarithm of .0625.0625.0625 to the base 222 is:
Answer Choices:
A. .025.025.025
B. 0.250.250.25
C. 555
D. −4-4−4
E. −2-2−2 Solution:
Let 2.0625=x∴2x=.0625=124∴x=−4\log _{2} .0625=\mathrm{x} \quad \therefore 2^{\mathrm{x}}=.0625=\dfrac{1}{2^{4}} \quad \therefore \mathrm{x}=-4log2​.0625=x∴2x=.0625=241​∴x=−4