Problem: The diagonal of square is . The perimeter of square II with twice the area of is:
Answer Choices:
A.
B.
C.
D.
E.
Solution:
Let be a side of square , a side of square II.
Area , Area . Since \mathrm{S}^{2}=2 \mathrm{~s}^
But \mathrm{s}=\dfrac{\mathrm{d}}{\sqrt{2}}=\dfrac{\mathrm{a}+\mathrm{b}}{\sqrt{2}} \quad \therefore \mathrm{~s}=\dfrac{\mathrm{a}+\mathrm{b}}{\sqrt{2}} \cdot \sqrt{2}=\mathrm{a}+\mathrm
Perimeter of .