Problem: If x xx is a number satisfying the equation x + 9 3 − x − 9 3 = 3 \sqrt[3]{x+9}-\sqrt[3]{x-9}=33 x + 9 ​ − 3 x − 9 ​ = 3 , then x 2 x^{2}x 2 is between:
Answer Choices:
A. 55 and 65
B. 65 and 75
C. 75 and 85
D. 85 and 95
E. 95 and 105
Solution:
x + 9 3 − x − 9 3 = 3 \sqrt[3]{x+9}-\sqrt[3]{x-9}=33 x + 9 ​ − 3 x − 9 ​ = 3 . Cube both sides and obtain
x + 9 − 3 ( x + 9 ) 2 / 3 ( x − 9 ) 2 / 3 + 3 ( x + 9 ) 1 / 3 ( x − 9 ) 2 / 3 − x + 9 = 27 x+9-3(x+9)^{2 / 3}(x-9)^{2 / 3}+3(x+9)^{1 / 3}(x-9)^{2 / 3}-x+9=27x + 9 − 3 ( x + 9 ) 2 / 3 ( x − 9 ) 2 / 3 + 3 ( x + 9 ) 1 / 3 ( x − 9 ) 2 / 3 − x + 9 = 2 7
Simplify to 9 = − 3 ( x + 9 ) 1 / 3 ( x − 9 ) 1 / 3 [ ( x + 9 ) 1 / 3 − ( x − 9 ) 1 / 3 ] = − 3 ( x + 9 ) 2 / 3 ( x − 9 ) 1 / 3 ⋅ 3 9=-3(x+9)^{1 / 3}(x-9)^{1 / 3}\left[(x+9)^{1 / 3}-(x-9)^{1 / 3}\right]=-3(x+9)^{2 / 3}(x-9)^{1 / 3} \cdot 39 = − 3 ( x + 9 ) 1 / 3 ( x − 9 ) 1 / 3 [ ( x + 9 ) 1 / 3 − ( x − 9 ) 1 / 3 ] = − 3 ( x + 9 ) 2 / 3 ( x − 9 ) 1 / 3 ⋅ 3
∴ ( x 2 − 81 ) 1 / 3 = − 1 , x 2 = 80 \therefore\left(x^{2}-81\right)^{1 / 3}=-1, x^{2}=80∴ ( x 2 − 8 1 ) 1 / 3 = − 1 , x 2 = 8 0 .
or
Let f ( x ) = x + 9 3 − x − 9 3 f(x)=\sqrt[3]{x+9}-\sqrt[3]{x-9}f ( x ) = 3 x + 9 ​ − 3 x − 9 ​ . We want to find x xx , so that f ( x 1 ) = 3 f\left(x_{1}\right)=3f ( x 1 ​ ) = 3 . Since f ( 9 ) = 18 3 < 3 f(9)=\sqrt[3]{18}<3f ( 9 ) = 3 1 8 ​ < 3 and f ( 8 ) = 17 3 + 1 > 3 f(8)=\sqrt[3]{17}+1>3f ( 8 ) = 3 1 7 ​ + 1 > 3 , then 8 < x 1 < 9 8<x_{1}<98 < x 1 ​ < 9 . We refine our guess by trying next x 1 = 8 7 8 x_{1}=8 \dfrac{7}{8}x 1 ​ = 8 8 7 ​ ; f ( 8 7 8 ) = 17 7 8 3 + 1 2 > 3. ∴ 8 7 8 < x 1 < 9 ∴ ( 8 7 8 ) 2 < x 1 2 < 81 , 78 < x 1 2 < 81 \mathrm{f}\left(8 \dfrac{7}{8}\right)=\sqrt[3]{17 \dfrac{7}{8}}+\dfrac{1}{2}>3 . \quad \therefore 8 \dfrac{7}{8}<x_{1}<9 \quad \therefore\left(8 \dfrac{7}{8}\right)^{2}<x_{1}^{2}<81,78<x_{1}^{2}<81f ( 8 8 7 ​ ) = 3 1 7 8 7 ​ ​ + 2 1 ​ > 3 . ∴ 8 8 7 ​ < x 1 ​ < 9 ∴ ( 8 8 7 ​ ) 2 < x 1 2 ​ < 8 1 , 7 8 < x 1 2 ​ < 8 1 .