Problem: The length of a rectangle is 555 inches and its width is less than 444 inches. The rectangle is folded so that two diagonally opposite vertices coincide. If the length of the crease if 6\sqrt{6}6β, then the width is:
Answer Choices:
A. 2\sqrt{2}2β
B. 3\sqrt{3}3β
C. 222
D. 5\sqrt{5}5β
E. 11/2\sqrt{11 / 2}11/2β Solution:
Let EB=xE B=xEB=x; then AE=EC=5βxA E=E C=5-xAE=EC=5βx and DF=xD F=xDF=x, so that AG=xA G=xAG=x and GE=5β2xG E=5-2 xGE=5β2x β΄w2=(6)2β(5β2x)2\therefore w^{2}=(\sqrt{6})^{2}-(5-2 x)^{2}β΄w2=(6β)2β(5β2x)2 and, also, w2=(5βx)2βx2β΄6β25+20xβ4x2w^{2}=(5-x)^{2}-x^{2} \quad \therefore 6-25+20 x-4 x^{2}w2=(5βx)2βx2β΄6β25+20xβ4x2 =25β10xβ΄x=2=25-10 x \quad \therefore x=2=25β10xβ΄x=2 and w=5w=\sqrt{5}w=5β. The value x=11/2x=11 / 2x=11/2 is rΓ©jected.