Problem: A foreman noticed an inspector checking a 3 ′ ′ 3^{\prime \prime}3 ′ ′ -hole with a 2 ′ ′ 2^{\prime \prime}2 ′ ′ -plug and a 1 ′ ′ 1^{\prime \prime}1 ′ ′ -plug and suggested that two more gauges be inserted to be sure that the fit was snug. If the new gauges are alike, then the diameter, d dd , of each, to the nearest hundredth of an inch, is:
Answer Choices:
A. 0.87 0.870 . 8 7
B. 0.86 0.860 . 8 6
C. 0.83 0.830 . 8 3
D. 0.75 0.750 . 7 5
E. 0.71 0.710 . 7 1
Solution:
O A ‾ = 1 2 + r , O ′ A ‾ = 1 + r , B A ‾ = 1 1 2 − r \overline{O A}=\dfrac{1}{2}+r, \overline{O^{\prime} A}=1+r, \overline{B A}=1 \dfrac{1}{2}-rO A = 2 1 ​ + r , O ′ A = 1 + r , B A = 1 2 1 ​ − r .
Area ( △ O B A ) = 2 (\triangle \mathrm{OBA})=2( △ O B A ) = 2 Area ( △ B O ′ A ) \left(\triangle \mathrm{BO}^{\prime} \mathrm{A}\right)( △ B O ′ A )
Semiperimeter (\triangle \mathrm{OBA})=\dfrac{1}{2}\left(\dfrac{1}{2}+r+1+\dfrac{3}{2}-r\right)=\dfrac{3}
Semiperimeter \left(\triangle B^{\prime} O A\right)=\dfrac{1}{2}\left(\dfrac{3}{2}-r+\dfrac{1}{2}+1+r\right)=\dfrac{3}
∴ 3 2 ( 1 − r ) ( 1 2 ) r = 2 3 2 ( r ) ( 1 ) ( 1 2 − r ) ∴ 7 r = 3 , r = 3 7 , d = 8 7 ≈ . 86 \therefore \sqrt{\dfrac{3}{2}(1-r)\left(\dfrac{1}{2}\right) r}=2 \sqrt{\dfrac{3}{2}(r)(1)\left(\dfrac{1}{2}-r\right)} \quad \therefore 7 r=3, r=\dfrac{3}{7}, d=\dfrac{8}{7} \approx .86∴ 2 3 ​ ( 1 − r ) ( 2 1 ​ ) r ​ = 2 2 3 ​ ( r ) ( 1 ) ( 2 1 ​ − r ) ​ ∴ 7 r = 3 , r = 7 3 ​ , d = 7 8 ​ ≈ . 8 6
or
Draw the altitude h hh from A AA to OB. We have, then
\left(\dfrac{1}{2}+r\right)^{2}-t^{2}=\left(\dfrac{1}{2}-r\right)^{2}-(1-t)^{2}, t=2 r-\dfrac{1}{2}, h^{2}=3 r-3 r^
Since Area ( Δ O A O ′ ) = 1 2 h ⋅ 3 2 = ( 3 2 + r ) ( r ) ( 1 ) ( 1 2 ) \left(\Delta O A O^{\prime}\right)=\dfrac{1}{2} h \cdot \dfrac{3}{2}=\sqrt{\left(\dfrac{3}{2}+r\right)(r)(1)\left(\dfrac{1}{2}\right)}( Δ O A O ′ ) = 2 1 ​ h ⋅ 2 3 ​ = ( 2 3 ​ + r ) ( r ) ( 1 ) ( 2 1 ​ ) ​ , we have 9 16 h 2 = 9 16 ( 3 r − 3 r 2 ) = 3 4 r + 1 2 r 2 ∴ r = 3 7 \dfrac{9}{16} h^{2}=\dfrac{9}{16}\left(3 r-3 r^{2}\right)=\dfrac{3}{4} r+\dfrac{1}{2} r^{2} \quad \therefore r=\dfrac{3}{7}1 6 9 ​ h 2 = 1 6 9 ​ ( 3 r − 3 r 2 ) = 4 3 ​ r + 2 1 ​ r 2 ∴ r = 7 3 ​ and d=\dfrac{6}