Problem: If x−y>xx-y>xx−y>x and x+y<yx+y<yx+y<y, then:
Answer Choices:
A. y<x\mathrm{y}<\mathrm{x}y<x
B. x<yx<yx<y
C. x<y<0\mathrm{x}<\mathrm{y}<0x<y<0
D. x<0,y<0\mathrm{x}<0, \mathrm{y}<0x<0,y<0
E. x<0,y>0\mathrm{x}<0, \mathrm{y}>0x<0,y>0 Solution:
Since x−y>x,y<0x-y>x, y<0x−y>x,y<0 and since x+y<y,x<0x+y<y, x<0x+y<y,x<0. ∴\therefore∴ Choice ( D ) is correct.