Problem: A B A BA B is a diameter of a circle. Tangents A D A DA D and B C B CB C are drawn so that A C A CA C and B D BDB D intersect in a point on the circle. If A D = a AD=\mathrm{a}A D = a and B C = b , a ≠ b BC=\mathrm{b}, \mathrm{a} \neq \mathrm{b}B C = b , a = b , the diameter of the circle is:
Answer Choices:
A. ∣ a − b ∣ |a-b|∣ a − b ∣
B. 1 2 ( a + b ) \dfrac{1}{2}(a+b)2 1 ( a + b )
C. a b \sqrt{a b}a b
D. a b a + b \dfrac{a b}{a+b}a + b a b
E. 1 2 a b a + b \dfrac{1}{2} \dfrac{a b}{a+b}2 1 a + b a b
Solution:
From similar triangles x y = a d \dfrac{x}{y}=\dfrac{a}{d}y x = d a and x d − y = b d \dfrac{x}{d-y}=\dfrac{b}{d}d − y x = d b \quad
∴ x 2 y ( d − y ) = a b d 2 . \therefore \dfrac{x^{2}}{y(d-y)}=\dfrac{a b}{d^{2}} . \quad∴ y ( d − y ) x 2 = d 2 a b . But x 2 = y ( d − y ) . ∴ 1 = a b d 2 ∴ d = a b x^{2}=y(d-y) . \quad \therefore 1=\dfrac{a b}{d^{2}} \quad \therefore d=\sqrt{a b}x 2 = y ( d − y ) . ∴ 1 = d 2 a b ∴ d = a b .
OR
Let the degree measure of arc AP be m mm .
Then ∠ D = 90 − m 2 \angle D=90-\dfrac{m}{2}∠ D = 9 0 − 2 m and ∠ C = m 2 \angle C=\dfrac{m}{2}∠ C = 2 m .
∴ d b = tan m 2 \therefore \dfrac{d}{b}=\tan \dfrac{m}{2}∴ b d = tan 2 m and d a = tan ( 90 − m 2 ) = 1 tan m 2 \dfrac{d}{a}=\tan \left(90-\dfrac{m}{2}\right)=\dfrac{1}{\tan \dfrac{m}{2}}a d = tan ( 9 0 − 2 m ) = tan 2 m 1
∴ 2 m 2 = a b ∴ d 2 b 2 = a b , d 2 = a b , d = a b \therefore \tan ^{2} \dfrac{m}{2}=\dfrac{a}{b} \quad \therefore \dfrac{d^{2}}{b^{2}}=\dfrac{a}{b}, d^{2}=a b, d=\sqrt{a b}∴ tan 2 2 m = b a ∴ b 2 d 2 = b a , d 2 = a b , d = a b .