Problem: Given ploga=qlogb=rlogc=logx, all logarithms to the same base and x=1. If acb2=xy, then y is:
Answer Choices:
A. p+rq2
B. 2qp+r
C. 2q−p−r
D. 2q−pr
E. q2−pr
Solution:
Since ploga=logx,a=xp. Similarly b=xq and c=xr.
∴acb2=xp⋅x5x2q=x2q−p−r. Since, also, acb2=xy,y=2q−p−r.