Problem: The real value of xxx such that 64xโ164^{x-1}64xโ1 divided by 4xโ14^{x-1}4xโ1 equals 2562x256^{2 x}2562x is:
Answer Choices:
A. โ23-\dfrac{2}{3}โ32โ
B. โ13-\dfrac{1}{3}โ31โ
C. 000
D. 14\dfrac{1}{4}41โ
E. 38\dfrac{3}{8}83โ Solution:
64xโ1รท4xโ1=43xโ3รท4xโ1=42xโ264^{x-1} \div 4^{x-1}=4^{3 x-3} \div 4^{x-1}=4^{2 x-2}64xโ1รท4xโ1=43xโ3รท4xโ1=42xโ2. Since 2562x=48x,42xโ2=48xโด2xโ2=8x,x=โ13256^{2 x}=4^{8 x}, 4^{2 x-2}=4^{8 x} \quad \therefore 2 x-2=8 x, x=-\dfrac{1}{3}2562x=48x,42xโ2=48xโด2xโ2=8x,x=โ31โ.