Problem: If the arithmetic mean of a aa and b bb is double their geometric mean, with a > b > 0 a>b>0a > b > 0 , then a possible value for the ratio a b \dfrac{a}{b}b a ​ , to the nearest integer, is
Answer Choices:
A. 5 55
B. 8 88
C. 11 111 1
D. 14 141 4
E. none of these
Solution:
a + b 2 = 2 a b , a + b = 4 a b , a 2 + 2 a b + b 2 = 16 a b \dfrac{a+b}{2}=2 \sqrt{a b}, a+b=4 \sqrt{a b}, a^{2}+2 a b+b^{2}=16 a b2 a + b ​ = 2 a b ​ , a + b = 4 a b ​ , a 2 + 2 a b + b 2 = 1 6 a b
∴ a 2 − 14 a b + b 2 = 0 , a = 14 b + b 192 2 ∴ a b = 14 + 192 2 ≈ 14 + 14 2 = 14 \therefore \mathrm{a}^{2}-14 \mathrm{ab}+\mathrm{b}^{2}=0, \mathrm{a}=\dfrac{14 \mathrm{~b}+\mathrm{b} \sqrt{192}}{2} \quad \therefore \dfrac{\mathrm{a}}{\mathrm{b}}=\dfrac{14+\sqrt{192}}{2} \approx \dfrac{14+14}{2}=14∴ a 2 − 1 4 a b + b 2 = 0 , a = 2 1 4 b + b 1 9 2 ​ ​ ∴ b a ​ = 2 1 4 + 1 9 2 ​ ​ ≈ 2 1 4 + 1 4 ​ = 1 4
Note. The value a b = 14 − 192 2 ≈ 14 − 14 2 = 0 \dfrac{\mathrm{a}}{\mathrm{b}}=\dfrac{14-\sqrt{192}}{2} \approx \dfrac{14-14}{2}=0b a ​ = 2 1 4 − 1 9 2 ​ ​ ≈ 2 1 4 − 1 4 ​ = 0 is not listed