Problem: Let L ( m ) L(m)L ( m ) be the x xx -coordinate of the left end point of the intersection of the graphs of y = x 2 − 6 y=x^{2}-6y = x 2 − 6 and y = m y=my = m where − 6 < m < 6 -6<m<6− 6 < m < 6 . Let r = L ( − m ) − L ( m ) m r=\dfrac{L(-m)-L(m)}{m}r = m L ( − m ) − L ( m ) ​ . Then, as m mm is made arbitrarily close to zero, the value of r rr is:
Answer Choices:
A. arbitrarily close to zero
B. arbitrarily close to 1 6 \dfrac{1}{\sqrt{6}}6 ​ 1 ​
C. arbitrarily close to 2 6 \dfrac{2}{\sqrt{6}}6 ​ 2 ​
D. arbitrarily large
E. undetermined
Solution:
r = L ( − m ) − L ( m ) m = − 6 − m + 6 + m m r=\dfrac{L(-m)-L(m)}{m}=\dfrac{-\sqrt{6-m}+\sqrt{6+m}}{m}
r = m L ( − m ) − L ( m ) ​ = m − 6 − m ​ + 6 + m ​ ​
∴ r = − 6 − m + 6 + m m ⋅ − 6 − m − 6 + m − 6 − m − 6 + m = − 2 m − m ( 6 − m + 6 + m ) \therefore r=\dfrac{-\sqrt{6-m}+\sqrt{6+m}}{m} \cdot \dfrac{-\sqrt{6-m}-\sqrt{6+m}}{-\sqrt{6-m}-\sqrt{6+m}}=\dfrac{-2 m}{-m(\sqrt{6-m}+\sqrt{6+m})}
∴ r = m − 6 − m ​ + 6 + m ​ ​ ⋅ − 6 − m ​ − 6 + m ​ − 6 − m ​ − 6 + m ​ ​ = − m ( 6 − m ​ + 6 + m ​ ) − 2 m ​
∴ r = 2 6 − m + 6 + m . As m → 0 , r → 2 6 + 6 = 1 6 \therefore r=\dfrac{2}{\sqrt{6-m}+\sqrt{6+m}} \text{. As }m \rightarrow 0, r \rightarrow \dfrac{2}{\sqrt{6}+\sqrt{6}}=\dfrac{1}{\sqrt{6}}
∴ r = 6 − m ​ + 6 + m ​ 2 ​ . As m → 0 , r → 6 ​ + 6 ​ 2 ​ = 6 ​ 1 ​