Problem: If log2​(log3​(log4​x))=log3​(log4​(log2​y))=log4​(log2​(log3​z))=0, then the sum x+y+z is equal to
Answer Choices:
A. 50
B. 58
C. 89
D. 111
E. 1296
Solution:
Since the antilog of 0 is 1 regardless of base, log3​(log4​x)=log4​(log2​y)= log2​(log3​z)=1 and hence log4​x=3,log2​y=4 and log3​z=2.∴x+y+z=43+24 +32=89.