Problem:
In triangle A B C A B CA B C in the adjoining figure, A D A DA D and A E A EA E trisect ∠B A C \angle B A C∠B A C . The lengths of B D , D E B D, D EB D , D E and E C E CE C are 2 , 3 2,32 , 3 and 6 66 , respectively. The length of the shortest side of △ A B C \triangle A B C△ A B C is
Answer Choices:
A. 2 10 2 \sqrt{10}2 1 0 ​
B. 11 111 1
C. 6 6 6 \sqrt{6}6 6 ​
D. 6 66
E. not uniquely determined by the given information
Solution:
In the adjoining figure let \Varangle B A C = 3 α , x = A B =3 \alpha, x=A B= 3 α , x = A B and y = A D y=A Dy = A D . Then by the angle bisector theorem A B = 2 3 A B=\dfrac{2}{3}A B = 3 2 ​ and A D A C = 1 2 \dfrac{A D}{A C}=\dfrac{1}{2}A C A D ​ = 2 1 ​ . Hence A E A EA E = 3 x 2 =\dfrac{3 x}{2}= 2 3 x ​ and A C = 2 y A C=2 yA C = 2 y . Using the law of cosines in △ A D B , △ A E D \triangle A D B, \triangle A E D△ A D B , △ A E D and △ A C E \triangle A C E△ A C E , respectively, yields
x 2 + y 2 − 4 2 x y = 9 4 x 2 + y 2 − 9 3 x y = 9 4 x 2 + 4 y 2 − 36 6 x y \begin{gathered}
\dfrac{x^{2}+y^{2}-4}{2 x y}= \\
\dfrac{\dfrac{9}{4} x^{2}+y^{2}-9}{3 x y}=\dfrac{\dfrac{9}{4} x^{2}+4 y^{2}-36}{6 x y}
\end{gathered}
2 x y x 2 + y 2 − 4 ​ = 3 x y 4 9 ​ x 2 + y 2 − 9 ​ = 6 x y 4 9 ​ x 2 + 4 y 2 − 3 6 ​ ​
The equality of the first and second expressions implies
3 x 2 − 2 y 2 = 12 3 x^{2}-2 y^{2}=12
3 x 2 − 2 y 2 = 1 2
The equality of the first and third expressions implies
3 x 2 − 4 y 2 = − 96 3 x^{2}-4 y^{2}=-96
3 x 2 − 4 y 2 = − 9 6
Solving these two equations for x xx and y yy yields
x = 2 10 y = 54 = 3 6 . \begin{aligned}
& x=2 \sqrt{10} \\
& y=\sqrt{54}=3 \sqrt{6} .
\end{aligned}
​ x = 2 1 0 ​ y = 5 4 ​ = 3 6 ​ . ​
Thus the sides are A B = 2 10 ≈ 6.3 , A C = 6 6 ≈ 14.7 A B=2 \sqrt{10} \approx 6.3, A C=6 \sqrt{6} \approx 14.7A B = 2 1 0 ​ ≈ 6 . 3 , A C = 6 6 ​ ≈ 1 4 . 7 , and B C = 11 B C=11B C = 1 1 .
OR \textbf{OR}
OR
In the adjoining figure let A B = a A B=aA B = a , A D = b , A E = c A D=b, A E=cA D = b , A E = c and A C = d A C=dA C = d . Using the angle bisector theorem
a c = 2 3 , b d = 3 6 \dfrac{a}{c}=\dfrac{2}{3}, \quad \dfrac{b}{d}=\dfrac{3}{6}
c a ​ = 3 2 ​ , d b ​ = 6 3 ​
Thus a = 2 c 3 a=\dfrac{2 c}{3}a = 3 2 c ​ and d = 2 b d=2 bd = 2 b . Using the formula for the length of an angle bisector*
b 2 + 6 = a c c 2 + 18 = b d \begin{aligned}
b^{2}+6 & =a c \\
c^{2}+18 & =b d
\end{aligned}
b 2 + 6 c 2 + 1 8 ​ = a c = b d ​
Using the relations above in these equations yields
b 2 + 6 = 2 c 2 3 c 2 + 18 = 2 b 2 \begin{aligned}
b^{2}+6 & =\dfrac{2 c^{2}}{3} \\
c^{2}+18 & =2 b^{2}
\end{aligned}
b 2 + 6 c 2 + 1 8 ​ = 3 2 c 2 ​ = 2 b 2 ​
Solving these equations for c 2 c^{2}c 2 and b 2 b^{2}b 2 yields
c 2 = 90 b 2 = 54. \begin{aligned}
c^{2} & =90 \\
b^{2} & =54 .
\end{aligned}
c 2 b 2 ​ = 9 0 = 5 4 . ​
Thus,
a = 2 ( 3 10 ) 3 = 2 10 , d = 2 ( 3 6 ) = 6 6 . \begin{aligned}
a & =\dfrac{2(3 \sqrt{10})}{3}=2 \sqrt{10}, \\
d & =2(3 \sqrt{6})=6 \sqrt{6} .
\end{aligned}
a d ​ = 3 2 ( 3 1 0 ​ ) ​ = 2 1 0 ​ , = 2 ( 3 6 ​ ) = 6 6 ​ . ​
Angle Bisector: Let A D A DA D be the angle bisector of ∠C A B \angle C A B∠C A B in △ A B C \triangle A B C△ A B C , then ( A D ) 2 + ( B D ) ( D C ) = ( A B ) ( A C ) (A D)^{2}+(B D)(D C)=(A B)(A C)( A D ) 2 + ( B D ) ( D C ) = ( A B ) ( A C ) .