Problem: If x≠0,x2=y2x \neq 0, \dfrac{x}{2}=y^{2}xî€ =0,2x​=y2 and x4=4y\dfrac{x}{4}=4 y4x​=4y, then xxx equals
Answer Choices:
A. 888
B. 161616
C. 323232
D. 646464
E. 128128128
Solution:
Solving each equation for y2y^{2}y2 gives y2=x2=x2256y^{2}=\dfrac{x}{2}=\dfrac{x^{2}}{256}y2=2x​=256x2​. Thus
x=2562=128 since x≠0x=\dfrac{256}{2}=128 \quad \text { since } x \neq 0 x=2256​=128 since xî€ =0