Problem:
Find ∑ k = 0 49 ( − 1 ) k ( 99 2 k ) \sum_{k=0}^{49}(-1)^{k}\binom{99}{2 k}∑ k = 0 4 9 ( − 1 ) k ( 2 k 9 9 ) , where ( n j ) = n ! j ! ( n − j ) ! \binom{n}{j}=\dfrac{n!}{j!(n-j)!}( j n ) = j ! ( n − j ) ! n ! .
Answer Choices:
A. − 2 50 -2^{50}− 2 5 0
B. − 2 49 -2^{49}− 2 4 9
C. 0 00
D. 2 49 2^{49}2 4 9
E. 2 50 2^{50}2 5 0
Solution:
By the Binomial Theorem,
( 1 + i ) 99 = ( 99 0 ) + ( 99 1 ) i + ( 99 2 ) i 2 + ( 99 3 ) i 3 + ⋯ + ( 99 99 ) i 99 (1+i)^{99}=\binom{99}{0}+\binom{99}{1} i+\binom{99}{2} i^{2}+\binom{99}{3} i^{3}+\cdots+\binom{99}{99} i^{99}
( 1 + i ) 9 9 = ( 0 9 9 ) + ( 1 9 9 ) i + ( 2 9 9 ) i 2 + ( 3 9 9 ) i 3 + ⋯ + ( 9 9 9 9 ) i 9 9
Note that the real part of this series is
( 99 0 ) − ( 99 2 ) + ( 99 4 ) − ( 99 6 ) + ⋯ − ( 99 98 ) \binom{99}{0}-\binom{99}{2}+\binom{99}{4}-\binom{99}{6}+\cdots-\binom{99}{98}
( 0 9 9 ) − ( 2 9 9 ) + ( 4 9 9 ) − ( 6 9 9 ) + ⋯ − ( 9 8 9 9 )
the very sum we want to find. Since ( 1 + i ) = 2 ( cos π 4 + i sin π 4 ) (1+i)=\sqrt{2}\left(\cos \dfrac{\pi}{4}+i \sin \dfrac{\pi}{4}\right)( 1 + i ) = 2 ( cos 4 π + i sin 4 π ) , by DeMoivre's Theorem ( 1 + i ) 99 = 2 ( 99 / 2 ) ( cos 99 π 4 + i sin 99 π 4 ) (1+i)^{99}=2^{(99 / 2)}\left(\cos \dfrac{99 \pi}{4}+i \sin \dfrac{99 \pi}{4}\right)( 1 + i ) 9 9 = 2 ( 9 9 / 2 ) ( cos 4 9 9 π + i sin 4 9 9 π ) . Thus the real part of ( 1 + i ) 99 (1+i)^{99}( 1 + i ) 9 9 is 2 99 / 2 cos 99 π 4 = 2 99 / 2 cos 3 π 4 = 2 99 / 2 ( − 2 2 ) = − 2 49 2^{99 / 2} \cos \dfrac{99 \pi}{4}=2^{99 / 2} \cos \dfrac{3 \pi}{4}=2^{99 / 2}\left(-\dfrac{\sqrt{2}}{2}\right)=-2^{49}2 9 9 / 2 cos 4 9 9 π = 2 9 9 / 2 cos 4 3 π = 2 9 9 / 2 ( − 2 2 ) = − 2 4 9 .