Problem:
Find the sum of the arithmetic series
20 + 20 1 5 + 20 2 5 + ⋯ + 40 20+20 \dfrac{1}{5}+20 \dfrac{2}{5}+\cdots+40
2 0 + 2 0 5 1 + 2 0 5 2 + ⋯ + 4 0
Answer Choices:
A. 3000 30003 0 0 0
B. 3030 30303 0 3 0
C. 3150 31503 1 5 0
D. 4100 41004 1 0 0
E. 6000 60006 0 0 0
Solution:
There are 101 1011 0 1 terms. In an arithmetic series, the sum is the number of terms times the average of the first and last terms. Thus the desired sum is 101 ⋅ ( 20 + 40 2 ) = 101 ⋅ 30 = 3030 101 \cdot\left(\dfrac{20+40}{2}\right)=101 \cdot 30=30301 0 1 ⋅ ( 2 2 0 + 4 0 ) = 1 0 1 ⋅ 3 0 = 3 0 3 0 .
OR \textbf{OR}
OR
There are 101 1011 0 1 terms. Write the sum of the last fifty terms in reverse order under the first fifty:
20 + 20 1 5 + 20 2 5 + ⋯ + 29 3 5 + 29 4 5 + 30 + 40 + 39 4 5 + 39 3 5 + ⋯ + 30 2 5 + 30 1 5 . 60 + 60 + 60 + ⋯ + 60 + 60 ⏟ 50 terms + 30 \begin{aligned}
& 20+20 \dfrac{1}{5}+20 \dfrac{2}{5}+\cdots+29 \dfrac{3}{5}+29 \dfrac{4}{5}+ 30 +\\
& \dfrac{40+39 \dfrac{4}{5}+39 \dfrac{3}{5}+\cdots+30 \dfrac{2}{5}+30 \dfrac{1}{5} .}{} \\ & \underbrace{60+60+60+\cdots+60+60}_{50 \text { terms }}+30
\end{aligned}
2 0 + 2 0 5 1 + 2 0 5 2 + ⋯ + 2 9 5 3 + 2 9 5 4 + 3 0 + 4 0 + 3 9 5 4 + 3 9 5 3 + ⋯ + 3 0 5 2 + 3 0 5 1 . 5 0 terms 6 0 + 6 0 + 6 0 + ⋯ + 6 0 + 6 0 + 3 0
Thus the sum is 50 ( 60 ) + 30 = 3030 50(60)+30=30305 0 ( 6 0 ) + 3 0 = 3 0 3 0 .
OR \textbf{OR}
OR
Since 1 5 + 2 5 + 3 5 + 4 5 = 2 \dfrac{1}{5}+\dfrac{2}{5}+\dfrac{3}{5}+\dfrac{4}{5}=25 1 + 5 2 + 5 3 + 5 4 = 2 , regroup the given expression as indicated to find the sum:
( 5 ( 20 ) + 2 ) + ( 5 ( 21 ) + 2 ) + ⋯ + ( 5 ( 39 ) + 2 ) + 40 = 5 ( 20 + 21 + ⋯ + 39 ) + 20 ( 2 ) + 40 = 5 ( 20 ⋅ 20 + 39 2 ) + 80 = 2950 + 80 = 3030. \begin{aligned}
(5(20)+2)+(5(21)+2)+\cdots & +(5(39)+2)+40 \\
& =5(20+21+\cdots+39)+20(2)+40 \\
& =5\left(20 \cdot \dfrac{20+39}{2}\right)+80=2950+80=3030 .
\end{aligned}
( 5 ( 2 0 ) + 2 ) + ( 5 ( 2 1 ) + 2 ) + ⋯ + ( 5 ( 3 9 ) + 2 ) + 4 0 = 5 ( 2 0 + 2 1 + ⋯ + 3 9 ) + 2 0 ( 2 ) + 4 0 = 5 ( 2 0 ⋅ 2 2 0 + 3 9 ) + 8 0 = 2 9 5 0 + 8 0 = 3 0 3 0 .