Problem:
The sequence
1 , 2 , 1 , 2 , 2 , 1 , 2 , 2 , 2 , 1 , 2 , 2 , 2 , 2 , 1 , 2 , 2 , 2 , 2 , 2 , 1 , 2 , … 1,2,1,2,2,1,2,2,2,1,2,2,2,2,1,2,2,2,2,2,1,2, \ldots
1 , 2 , 1 , 2 , 2 , 1 , 2 , 2 , 2 , 1 , 2 , 2 , 2 , 2 , 1 , 2 , 2 , 2 , 2 , 2 , 1 , 2 , …
consists of 1 11 's separated by blocks of 2 22 's with n 2 n2n 2 's in the n th n^{\text {th }}n th block. The sum of the first 1234 12341 2 3 4 terms of this sequence is
Answer Choices:
A. 1996 19961 9 9 6
B. 2419 24192 4 1 9
C. 2429 24292 4 2 9
D. 2439 24392 4 3 9
E. 2449 24492 4 4 9
Solution:
The k th 1 k^{\text {th }} 1k th 1 is at position
1 + 2 + 3 + ⋯ + k = k ( k + 1 ) 2 1+2+3+\cdots+k=\dfrac{k(k+1)}{2}
1 + 2 + 3 + ⋯ + k = 2 k ( k + 1 )
and 49 ( 50 ) 2 < 1234 < 50 ( 51 ) 2 \dfrac{49(50)}{2}<1234<\dfrac{50(51)}{2}2 4 9 ( 5 0 ) < 1 2 3 4 < 2 5 0 ( 5 1 ) , so there are 491 4914 9 1 's among the first 1234 12341 2 3 4 terms. All the other terms are 2 22 's, so the sum is 1234 ( 2 ) − 49 = 2419 1234(2)-49=24191 2 3 4 ( 2 ) − 4 9 = 2 4 1 9 .
OR \textbf{OR}
OR
The sum of all the terms through the occurrence of the k th 1 k^{\text {th }} 1k th 1 is
1 + ( 2 + 1 ) + ( 2 + 2 + 1 ) + ⋯ + ( 2 + 2 + ⋯ + 2 ⏟ k − 1 + 1 ) = 1 + 3 + 5 + ⋯ + ( 2 k − 1 ) = k 2 . \begin{aligned}
& 1+(2+1)+(2+2+1)+\cdots+(\underbrace{2+2+\cdots+2}_{k-1}+1) \\
= & 1+3+5+\cdots+(2 k-1) \\
= & k^{2} .
\end{aligned}
= = 1 + ( 2 + 1 ) + ( 2 + 2 + 1 ) + ⋯ + ( k − 1 2 + 2 + ⋯ + 2 + 1 ) 1 + 3 + 5 + ⋯ + ( 2 k − 1 ) k 2 .
The k th 1 k^{\text {th }} 1k th 1 is at position
1 + 2 + 3 + ⋯ + k = k ( k + 1 ) 2 . 1+2+3+\cdots+k=\dfrac{k(k+1)}{2} .
1 + 2 + 3 + ⋯ + k = 2 k ( k + 1 ) .
It follows that the last 1 11 among the first 1234 12341 2 3 4 terms of the sequence occurs at position 1225 12251 2 2 5 for k = 49 k=49k = 4 9 . Thus, the sum of the first 1225 12251 2 2 5 terms is 4 9 2 = 2401 49^{2}=24014 9 2 = 2 4 0 1 , and the sum of the next nine terms, all of which are 2 22 's, is 18 181 8 , for a total of 2401 + 18 = 2419 2401+18=24192 4 0 1 + 1 8 = 2 4 1 9 .