Problem:
The figure shown is the union of a circle and two semicircles of diameters a aa and b bb , all of whose centers are collinear. The ratio of the area of the shaded region to that of the unshaded region is
Answer Choices:
A. a b \sqrt{\dfrac{a}{b}}b a ​ ​
B. a b \dfrac{a}{b}b a ​
C. a 2 b 2 \dfrac{a^{2}}{b^{2}}b 2 a 2 ​
D. a + b 2 b \dfrac{a+b}{2 b}2 b a + b ​
E. a 2 + 2 a b b 2 + 2 a b \dfrac{a^{2}+2 a b}{b^{2}+2 a b}b 2 + 2 a b a 2 + 2 a b ​
Solution:
The area of the shaded region is
π 2 ( ( a + b 2 ) 2 + ( a 2 ) 2 − ( b 2 ) 2 ) = π 2 a + b 2 ( a + b 2 + a − b 2 ) = π ( a + b ) a 4 \dfrac{\pi}{2}\left(\left(\dfrac{a+b}{2}\right)^{2}+\left(\dfrac{a}{2}\right)^{2}-\left(\dfrac{b}{2}\right)^{2}\right)=\dfrac{\pi}{2} \dfrac{a+b}{2}\left(\dfrac{a+b}{2}+\dfrac{a-b}{2}\right)=\dfrac{\pi(a+b) a}{4}
2 π ​ ( ( 2 a + b ​ ) 2 + ( 2 a ​ ) 2 − ( 2 b ​ ) 2 ) = 2 π ​ 2 a + b ​ ( 2 a + b ​ + 2 a − b ​ ) = 4 π ( a + b ) a ​
and the area of the unshaded region is
π 2 ( ( a + b 2 ) 2 − ( a 2 ) 2 + ( b 2 ) 2 ) = π 2 a + b 2 ( a + b 2 + b − a 2 ) = π ( a + b ) b 4 \dfrac{\pi}{2}\left(\left(\dfrac{a+b}{2}\right)^{2}-\left(\dfrac{a}{2}\right)^{2}+\left(\dfrac{b}{2}\right)^{2}\right)=\dfrac{\pi}{2} \dfrac{a+b}{2}\left(\dfrac{a+b}{2}+\dfrac{b-a}{2}\right)=\dfrac{\pi(a+b) b}{4}
2 π ​ ( ( 2 a + b ​ ) 2 − ( 2 a ​ ) 2 + ( 2 b ​ ) 2 ) = 2 π ​ 2 a + b ​ ( 2 a + b ​ + 2 b − a ​ ) = 4 π ( a + b ) b ​
Their ratio is a / b a / ba / b .