Problem:
Let a , b , c a, b, ca , b , c be positive real numbers such that a 2 + b 2 + c 2 + ( a + b + c ) 2 ≤ 4 a^{2}+b^{2}+c^{2}+(a+b+c)^{2} \leq 4a 2 + b 2 + c 2 + ( a + b + c ) 2 ≤ 4 . Prove that
a b + 1 ( a + b ) 2 + b c + 1 ( b + c ) 2 + c a + 1 ( c + a ) 2 ≥ 3 \frac{a b+1}{(a+b)^{2}}+\frac{b c+1}{(b+c)^{2}}+\frac{c a+1}{(c+a)^{2}} \geq 3
( a + b ) 2 a b + 1 ​ + ( b + c ) 2 b c + 1 ​ + ( c + a ) 2 c a + 1 ​ ≥ 3
Solution:
The given condition is equivalent to a 2 + b 2 + c 2 + a b + b c + c a ≤ 2 a^{2}+b^{2}+c^{2}+a b+b c+c a \leq 2a 2 + b 2 + c 2 + a b + b c + c a ≤ 2 . We will prove that
2 a b + 2 ( a + b ) 2 + 2 b c + 2 ( b + c ) 2 + 2 c a + 2 ( c + a ) 2 ≥ 6 \frac{2 a b+2}{(a+b)^{2}}+\frac{2 b c+2}{(b+c)^{2}}+\frac{2 c a+2}{(c+a)^{2}} \geq 6
( a + b ) 2 2 a b + 2 ​ + ( b + c ) 2 2 b c + 2 ​ + ( c + a ) 2 2 c a + 2 ​ ≥ 6
Indeed, we have
2 a b + 2 ( a + b ) 2 ≥ 2 a b + a 2 + b 2 + c 2 + a b + b c + c a ( a + b ) 2 = 1 + ( c + a ) ( c + b ) ( a + b ) 2 \frac{2 a b+2}{(a+b)^{2}} \geq \frac{2 a b+a^{2}+b^{2}+c^{2}+a b+b c+c a}{(a+b)^{2}}=1+\frac{(c+a)(c+b)}{(a+b)^{2}}
( a + b ) 2 2 a b + 2 ​ ≥ ( a + b ) 2 2 a b + a 2 + b 2 + c 2 + a b + b c + c a ​ = 1 + ( a + b ) 2 ( c + a ) ( c + b ) ​
Adding the last inequality with its cyclic analogous forms yields
2 a b + 2 ( a + b ) 2 + 2 b c + 2 ( b + c ) 2 + 2 c a + 2 ( c + a ) 2 ≥ 3 + ( c + a ) ( c + b ) ( a + b ) 2 + ( a + b ) ( a + c ) ( b + c ) 2 + ( b + c ) ( b + a ) ( c + a ) 2 \frac{2 a b+2}{(a+b)^{2}}+\frac{2 b c+2}{(b+c)^{2}}+\frac{2 c a+2}{(c+a)^{2}} \geq 3+\frac{(c+a)(c+b)}{(a+b)^{2}}+\frac{(a+b)(a+c)}{(b+c)^{2}}+\frac{(b+c)(b+a)}{(c+a)^{2}}
( a + b ) 2 2 a b + 2 ​ + ( b + c ) 2 2 b c + 2 ​ + ( c + a ) 2 2 c a + 2 ​ ≥ 3 + ( a + b ) 2 ( c + a ) ( c + b ) ​ + ( b + c ) 2 ( a + b ) ( a + c ) ​ + ( c + a ) 2 ( b + c ) ( b + a ) ​
Hence it remains to prove that
( c + a ) ( c + b ) ( a + b ) 2 + ( a + b ) ( a + c ) ( b + c ) 2 + ( b + c ) ( b + a ) ( c + a ) 2 ≥ 3 \frac{(c+a)(c+b)}{(a+b)^{2}}+\frac{(a+b)(a+c)}{(b+c)^{2}}+\frac{(b+c)(b+a)}{(c+a)^{2}} \geq 3
( a + b ) 2 ( c + a ) ( c + b ) ​ + ( b + c ) 2 ( a + b ) ( a + c ) ​ + ( c + a ) 2 ( b + c ) ( b + a ) ​ ≥ 3
But this follows directly from the AM-GM inequality. Equality holds if and only if a + b = a+b=a + b = b + c = c + a b+c=c+ab + c = c + a , which together with the given condition, shows that it occurs if and only if a = b = c = 1 3 a=b=c=\frac{1}{\sqrt{3}}a = b = c = 3 ​ 1 ​ .
OR
Set 2 x = a + b , 2 y = b + c 2 x=a+b, 2 y=b+c2 x = a + b , 2 y = b + c , and 2 z = c + a 2 z=c+a2 z = c + a ; that is, a = z + x − y , b = x + y − z a=z+x-y, b=x+y-za = z + x − y , b = x + y − z , and c = y + z − x c=y+z-xc = y + z − x . Hence
a b + 1 ( a + b ) 2 = ( z + x − y ) ( x + y − z ) + 1 4 x 2 = x 2 − ( y − z ) 2 + 1 4 x 2 = x 2 + 2 y z + 1 − y 2 − z 2 4 x 2 \frac{a b+1}{(a+b)^{2}}=\frac{(z+x-y)(x+y-z)+1}{4 x^{2}}=\frac{x^{2}-(y-z)^{2}+1}{4 x^{2}}=\frac{x^{2}+2 y z+1-y^{2}-z^{2}}{4 x^{2}}
( a + b ) 2 a b + 1 ​ = 4 x 2 ( z + x − y ) ( x + y − z ) + 1 ​ = 4 x 2 x 2 − ( y − z ) 2 + 1 ​ = 4 x 2 x 2 + 2 y z + 1 − y 2 − z 2 ​
On the other hand, the given condition is equivalent to 2 a 2 + 2 b 2 + 2 c 2 + 2 a b + 2 b c + 2 c a ≤ 4 2 a^{2}+2 b^{2}+2 c^{2}+2 a b+2 b c+2 c a \leq 42 a 2 + 2 b 2 + 2 c 2 + 2 a b + 2 b c + 2 c a ≤ 4 or ( a + b ) 2 + ( b + c ) 2 + ( c + a ) 2 ≤ 4 (a+b)^{2}+(b+c)^{2}+(c+a)^{2} \leq 4( a + b ) 2 + ( b + c ) 2 + ( c + a ) 2 ≤ 4 ; that is, x 2 + y 2 + z 2 ≤ 1 x^{2}+y^{2}+z^{2} \leq 1x 2 + y 2 + z 2 ≤ 1 or 1 − y 2 − z 2 ≥ x 2 1-y^{2}-z^{2} \geq x^{2}1 − y 2 − z 2 ≥ x 2 . It follows that
a b + 1 ( a + b ) 2 = x 2 + 2 y z + 1 − y 2 − z 2 4 x 2 ≥ x 2 + 2 y z + x 2 4 x 2 = 1 2 + y z 2 x 2 \frac{a b+1}{(a+b)^{2}}=\frac{x^{2}+2 y z+1-y^{2}-z^{2}}{4 x^{2}} \geq \frac{x^{2}+2 y z+x^{2}}{4 x^{2}}=\frac{1}{2}+\frac{y z}{2 x^{2}}
( a + b ) 2 a b + 1 ​ = 4 x 2 x 2 + 2 y z + 1 − y 2 − z 2 ​ ≥ 4 x 2 x 2 + 2 y z + x 2 ​ = 2 1 ​ + 2 x 2 y z ​
Likewise, we have
b c + 1 ( b + c ) 2 = 1 2 + z x 2 y 2 and c a + 1 ( c + a ) 2 = 1 2 + x y 2 z 2 \frac{b c+1}{(b+c)^{2}}=\frac{1}{2}+\frac{z x}{2 y^{2}} \quad \text { and } \quad \frac{c a+1}{(c+a)^{2}}=\frac{1}{2}+\frac{x y}{2 z^{2}}
( b + c ) 2 b c + 1 ​ = 2 1 ​ + 2 y 2 z x ​ and ( c + a ) 2 c a + 1 ​ = 2 1 ​ + 2 z 2 x y ​
Adding the last three inequalities gives
a b + 1 ( a + b ) 2 + b c + 1 ( b + c ) 2 + c a + 1 ( c + a ) 2 ≥ 3 2 + y z 2 x 2 + z x 2 y 2 + x y 2 z 2 ≥ 3 \frac{a b+1}{(a+b)^{2}}+\frac{b c+1}{(b+c)^{2}}+\frac{c a+1}{(c+a)^{2}} \geq \frac{3}{2}+\frac{y z}{2 x^{2}}+\frac{z x}{2 y^{2}}+\frac{x y}{2 z^{2}} \geq 3
( a + b ) 2 a b + 1 ​ + ( b + c ) 2 b c + 1 ​ + ( c + a ) 2 c a + 1 ​ ≥ 2 3 ​ + 2 x 2 y z ​ + 2 y 2 z x ​ + 2 z 2 x y ​ ≥ 3
by the AM-GM inequality. Equality holds if and only if x = y = z x=y=zx = y = z or a = b = c = 1 3 a=b=c=\frac{1}{\sqrt{3}}a = b = c = 3 ​ 1 ​ .
The problems on this page are the property of the MAA's American Mathematics Competitions