Problem:
Prove that for every nonnegative integer n nn , the number 7 7 n + 1 7^{7^{n}}+17 7 n + 1 is the product of at least 2 n + 3 2 n+32 n + 3 (not necessarily distinct) primes.
Solution:
The proof is by induction. The base is provided by the n = 0 n=0n = 0 case, where 7 7 0 + 1 = 7 1 + 1 = 2 3 7^{7^{0}}+1=7^{1}+1=2^{3}7 7 0 + 1 = 7 1 + 1 = 2 3 . To prove the inductive step, it suffices to show that if x = 7 2 m − 1 x=7^{2 m-1}x = 7 2 m − 1 for some positive integer m mm then ( x 7 + 1 ) / ( x + 1 ) \left(x^{7}+1\right) /(x+1)( x 7 + 1 ) / ( x + 1 ) is composite. As a consequence, x 7 + 1 x^{7}+1x 7 + 1 has at least two more prime factors than does x + 1 x+1x + 1 . To confirm that ( x 7 + 1 ) / ( x + 1 ) \left(x^{7}+1\right) /(x+1)( x 7 + 1 ) / ( x + 1 ) is composite, observe that
x 7 + 1 x + 1 = ( x + 1 ) 7 − ( ( x + 1 ) 7 − ( x 7 + 1 ) ) x + 1 = ( x + 1 ) 6 − 7 x ( x 5 + 3 x 4 + 5 x 3 + 5 x 2 + 3 x + 1 ) x + 1 = ( x + 1 ) 6 − 7 x ( x 4 + 2 x 3 + 3 x 2 + 2 x + 1 ) = ( x + 1 ) 6 − 7 2 m ( x 2 + x + 1 ) 2 = { ( x + 1 ) 3 − 7 m ( x 2 + x + 1 ) } { ( x + 1 ) 3 + 7 m ( x 2 + x + 1 ) } \begin{aligned}
\frac{x^{7}+1}{x+1} & =\frac{(x+1)^{7}-\left((x+1)^{7}-\left(x^{7}+1\right)\right)}{x+1} \\
& =(x+1)^{6}-\frac{7 x\left(x^{5}+3 x^{4}+5 x^{3}+5 x^{2}+3 x+1\right)}{x+1} \\
& =(x+1)^{6}-7 x\left(x^{4}+2 x^{3}+3 x^{2}+2 x+1\right) \\
& =(x+1)^{6}-7^{2 m}\left(x^{2}+x+1\right)^{2} \\
& =\left\{(x+1)^{3}-7^{m}\left(x^{2}+x+1\right)\right\}\left\{(x+1)^{3}+7^{m}\left(x^{2}+x+1\right)\right\}
\end{aligned}
x + 1 x 7 + 1 ​ ​ = x + 1 ( x + 1 ) 7 − ( ( x + 1 ) 7 − ( x 7 + 1 ) ) ​ = ( x + 1 ) 6 − x + 1 7 x ( x 5 + 3 x 4 + 5 x 3 + 5 x 2 + 3 x + 1 ) ​ = ( x + 1 ) 6 − 7 x ( x 4 + 2 x 3 + 3 x 2 + 2 x + 1 ) = ( x + 1 ) 6 − 7 2 m ( x 2 + x + 1 ) 2 = { ( x + 1 ) 3 − 7 m ( x 2 + x + 1 ) } { ( x + 1 ) 3 + 7 m ( x 2 + x + 1 ) } ​
Also each factor exceeds 1 . It suffices to check the smaller one; 7 x ≤ x \sqrt{7 x} \leq x7 x ​ ≤ x gives
( x + 1 ) 3 − 7 m ( x 2 + x + 1 ) = ( x + 1 ) 3 − 7 x ( x 2 + x + 1 ) ≥ x 3 + 3 x 2 + 3 x + 1 − x ( x 2 + x + 1 ) = 2 x 2 + 2 x + 1 ≥ 113 > 1 \begin{aligned}
(x+1)^{3}-7^{m}\left(x^{2}+x+1\right) & =(x+1)^{3}-\sqrt{7 x}\left(x^{2}+x+1\right) \\
& \geq x^{3}+3 x^{2}+3 x+1-x\left(x^{2}+x+1\right) \\
& =2 x^{2}+2 x+1 \geq 113>1
\end{aligned}
( x + 1 ) 3 − 7 m ( x 2 + x + 1 ) ​ = ( x + 1 ) 3 − 7 x ​ ( x 2 + x + 1 ) ≥ x 3 + 3 x 2 + 3 x + 1 − x ( x 2 + x + 1 ) = 2 x 2 + 2 x + 1 ≥ 1 1 3 > 1 ​
Hence ( x 7 + 1 ) / ( x + 1 ) \left(x^{7}+1\right) /(x+1)( x 7 + 1 ) / ( x + 1 ) is composite and the proof is complete.
This problem was suggested by Titu Andreescu.
The problems on this page are the property of the MAA's American Mathematics Competitions