Problem:
For n ≥ 2 n \geq 2n ≥ 2 let a 1 , a 2 , … , a n a_1, a_2, \ldots, a_na 1 , a 2 , … , a n be positive real numbers such that
( a 1 + a 2 + ⋯ + a n ) ( 1 a 1 + 1 a 2 + ⋯ + 1 a n ) ≤ ( n + 1 2 ) 2 . \left(a_1+a_2+\cdots+a_n\right)\left(\frac{1}{a_1}+\frac{1}{a_2}+\cdots+\frac{1}{a_n}\right) \leq\left(n+\frac{1}{2}\right)^2 .
( a 1 + a 2 + ⋯ + a n ) ( a 1 1 + a 2 1 + ⋯ + a n 1 ) ≤ ( n + 2 1 ) 2 .
Prove that max ( a 1 , a 2 , … , a n ) ≤ 4 min ( a 1 , a 2 , … , a n ) \max \left(a_1, a_2, \ldots, a_n\right) \leq 4 \min \left(a_1, a_2, \ldots, a_n\right)max ( a 1 , a 2 , … , a n ) ≤ 4 min ( a 1 , a 2 , … , a n ) .
Solution:
Let m = min ( a 1 , a 2 , … , a n ) m=\min \left(a_{1}, a_{2}, \ldots, a_{n}\right)m = min ( a 1 , a 2 , … , a n ) and M = max ( a 1 , a 2 , … , a n ) M=\max \left(a_{1}, a_{2}, \ldots, a_{n}\right)M = max ( a 1 , a 2 , … , a n ) . Without loss of generality, a 1 = m a_{1}=ma 1 = m and a n = M a_{n}=Ma n = M . The Cauchy-Schwarz Inequality gives
Remark: Let m = min ( a 1 , a 2 , … , a n ) m=\min \left(a_{1}, a_{2}, \ldots, a_{n}\right)m = min ( a 1 , a 2 , … , a n ) and M = max ( a 1 , a 2 , … , a n ) M=\max \left(a_{1}, a_{2}, \ldots, a_{n}\right)M = max ( a 1 , a 2 , … , a n ) . By symmetry, we may assume without loss of generality, m = a 1 ≤ a 2 ≤ ⋯ ≤ a n = M m=a_{1} \leq a_{2} \leq \cdots \leq a_{n}=Mm = a 1 ≤ a 2 ≤ ⋯ ≤ a n = M . We present three solutions. The first solution is a direct application of the Cauchy-Schwarz Inequality. The second solution bypasses Cauchy-Schwarz by applying one of its proofs. The third solution applies the AM-GM and AM-HM inequalities. All of them share the same finish, the case for n = 2 n=2n = 2 .
If n = 2 n=2n = 2 , given condition reads
( m + M ) ( 1 m + 1 M ) ≤ 25 4 (m+M)\left(\frac{1}{m}+\frac{1}{M}\right) \leq \frac{25}{4}
( m + M ) ( m 1 + M 1 ) ≤ 4 2 5
It follows that
4 ( m + M ) 2 ≤ 25 M m or ( 4 M − m ) ( M − 4 m ) ≤ 0 (1) 4(m+M)^{2} \leq 25 M m \quad \text { or } \quad(4 M-m)(M-4 m) \leq 0 \tag{1}
4 ( m + M ) 2 ≤ 2 5 M m or ( 4 M − m ) ( M − 4 m ) ≤ 0 ( 1 )
Because 4 M − m > 0 4 M-m>04 M − m > 0 , it must be that M − 4 m ≤ 0 M-4 m \leq 0M − 4 m ≤ 0 and thus M ≤ 4 m M \leq 4 mM ≤ 4 m .
We may assume from now that n ≥ 3 n \geq 3n ≥ 3 .
. The Cauchy-Schwarz Inequality gives
( n + 1 2 ) 2 ≥ ( a 1 + a 2 + ⋯ + a n ) ( 1 a 1 + 1 a 2 + ⋯ + 1 a n ) = ( m + a 2 + ⋯ + a n − 1 + M ) ( 1 M + 1 a 2 + ⋯ + 1 a n − 1 + 1 m ) ≥ ( m M + 1 + ⋯ + 1 ⏟ n − 2 + M m ) 2 \begin{aligned}
\left(n+\frac{1}{2}\right)^{2} & \geq\left(a_{1}+a_{2}+\cdots+a_{n}\right)\left(\frac{1}{a_{1}}+\frac{1}{a_{2}}+\cdots+\frac{1}{a_{n}}\right) \\
& =\left(m+a_{2}+\cdots+a_{n-1}+M\right)\left(\frac{1}{M}+\frac{1}{a_{2}}+\cdots+\frac{1}{a_{n-1}}+\frac{1}{m}\right) \\
& \geq(\sqrt{\frac{m}{M}}+\underbrace{1+\cdots+1}_{n-2}+\sqrt{\frac{M}{m}})^{2}
\end{aligned}
( n + 2 1 ) 2 ≥ ( a 1 + a 2 + ⋯ + a n ) ( a 1 1 + a 2 1 + ⋯ + a n 1 ) = ( m + a 2 + ⋯ + a n − 1 + M ) ( M 1 + a 2 1 + ⋯ + a n − 1 1 + m 1 ) ≥ ( M m + n − 2 1 + ⋯ + 1 + m M ) 2
Hence
n + 1 2 ≥ m M + n − 2 + M m or m M + M m ≤ 5 2 (2) n+\frac{1}{2} \geq \sqrt{\frac{m}{M}}+n-2+\sqrt{\frac{M}{m}} \quad \text { or } \quad \sqrt{\frac{m}{M}}+\sqrt{\frac{M}{m}} \leq \frac{5}{2} \tag{2}
n + 2 1 ≥ M m + n − 2 + m M or M m + m M ≤ 2 5 ( 2 )
It follows that
2 ( m + M ) ≤ 5 M m 2(m+M) \leq 5 \sqrt{M m}
2 ( m + M ) ≤ 5 M m
which is (1), completing our proof.
Solution 2. Consider the quadratic polynomial (in x xx )
p ( x ) = 1 2 [ ( a 1 x + 1 a n ) 2 + ( a n x + 1 a 1 ) 2 + ∑ i = 2 n − 1 ( a i x + 1 a i ) 2 + ( 5 − 2 m M − 2 M m ) x ] = ( 1 2 ∑ i = 1 n a i ) x 2 + 2 n + 1 2 ⋅ x + ( 1 2 ∑ i = 1 n 1 a i ) \begin{aligned}
p(x) & =\frac{1}{2}\left[\left(\sqrt{a_{1}} x+\frac{1}{\sqrt{a_{n}}}\right)^{2}+\left(\sqrt{a_{n}} x+\frac{1}{\sqrt{a_{1}}}\right)^{2}+\sum_{i=2}^{n-1}\left(\sqrt{a_{i}} x+\frac{1}{\sqrt{a_{i}}}\right)^{2}+\left(5-2 \sqrt{\frac{m}{M}}-2 \sqrt{\frac{M}{m}}\right) x\right] \\
& =\left(\frac{1}{2} \sum_{i=1}^{n} a_{i}\right) x^{2}+\frac{2 n+1}{2} \cdot x+\left(\frac{1}{2} \sum_{i=1}^{n} \frac{1}{a_{i}}\right)
\end{aligned}
p ( x ) = 2 1 [ ( a 1 x + a n 1 ) 2 + ( a n x + a 1 1 ) 2 + i = 2 ∑ n − 1 ( a i x + a i 1 ) 2 + ( 5 − 2 M m − 2 m M ) x ] = ( 2 1 i = 1 ∑ n a i ) x 2 + 2 2 n + 1 ⋅ x + ( 2 1 i = 1 ∑ n a i 1 )
Its discriminant is equal to
Δ = ( n + 1 2 ) 2 − ( ∑ i = 1 n a i ) ( ∑ i = 1 n 1 a i ) \Delta=\left(n+\frac{1}{2}\right)^{2}-\left(\sum_{i=1}^{n} a_{i}\right)\left(\sum_{i=1}^{n} \frac{1}{a_{i}}\right)
Δ = ( n + 2 1 ) 2 − ( i = 1 ∑ n a i ) ( i = 1 ∑ n a i 1 )
which, by the given condition is nonnegative. Thus p ( x ) p(x)p ( x ) has a real root r rr , and
0 = 2 p ( r ) ≥ ( 5 − 2 m M − 2 M m ) r 0=2 p(r) \geq\left(5-2 \sqrt{\frac{m}{M}}-2 \sqrt{\frac{M}{m}}\right) r
0 = 2 p ( r ) ≥ ( 5 − 2 M m − 2 m M ) r
Because all of the coefficients of p pp are positive, we must have r < 0 r<0r < 0 , from which (2) follows.
Solution 3. We set a = a 2 + ⋯ + a n − 1 n − 2 a=\frac{a_{2}+\cdots+a_{n-1}}{n-2}a = n − 2 a 2 + ⋯ + a n − 1 . Then m ≤ a 2 ≤ a ≤ a n − 1 ≤ M m \leq a_{2} \leq a \leq a_{n-1} \leq Mm ≤ a 2 ≤ a ≤ a n − 1 ≤ M and a 2 + ⋯ + a n − 1 = a_{2}+\cdots+a_{n-1}=a 2 + ⋯ + a n − 1 = ( n − 2 ) a (n-2) a( n − 2 ) a . By the AM-HM Inequality, we have
1 a 2 + ⋯ + 1 a n − 1 ≥ ( n − 2 ) 2 a 2 + ⋯ + a n − 1 = n − 2 a \frac{1}{a_{2}}+\cdots+\frac{1}{a_{n-1}} \geq \frac{(n-2)^{2}}{a_{2}+\cdots+a_{n-1}}=\frac{n-2}{a}
a 2 1 + ⋯ + a n − 1 1 ≥ a 2 + ⋯ + a n − 1 ( n − 2 ) 2 = a n − 2
If follows that
( n + 1 2 ) 2 ≥ ( a 1 + a 2 + ⋯ + a n ) ( 1 a 1 + 1 a 2 + ⋯ + 1 a n ) ≥ ( m + ( n − 2 ) a + M ) ( 1 m + n − 2 a + 1 M ) = ( m + M ) ( 1 m + 1 M ) + ( n − 2 ) 2 + ( n − 2 ) ( m + M ) a + ( n − 2 ) a ( 1 m + 1 M ) = ( m + M ) 2 m M + ( n − 2 ) 2 + ( n − 2 ) ( m + M ) m M ⋅ ( m M a + a ) \begin{aligned}
\left(n+\frac{1}{2}\right)^{2} & \geq\left(a_{1}+a_{2}+\cdots+a_{n}\right)\left(\frac{1}{a_{1}}+\frac{1}{a_{2}}+\cdots+\frac{1}{a_{n}}\right) \\
& \geq(m+(n-2) a+M)\left(\frac{1}{m}+\frac{n-2}{a}+\frac{1}{M}\right) \\
& =(m+M)\left(\frac{1}{m}+\frac{1}{M}\right)+(n-2)^{2}+\frac{(n-2)(m+M)}{a}+(n-2) a\left(\frac{1}{m}+\frac{1}{M}\right) \\
& =\frac{(m+M)^{2}}{m M}+(n-2)^{2}+\frac{(n-2)(m+M)}{m M} \cdot\left(\frac{m M}{a}+a\right)
\end{aligned}
( n + 2 1 ) 2 ≥ ( a 1 + a 2 + ⋯ + a n ) ( a 1 1 + a 2 1 + ⋯ + a n 1 ) ≥ ( m + ( n − 2 ) a + M ) ( m 1 + a n − 2 + M 1 ) = ( m + M ) ( m 1 + M 1 ) + ( n − 2 ) 2 + a ( n − 2 ) ( m + M ) + ( n − 2 ) a ( m 1 + M 1 ) = m M ( m + M ) 2 + ( n − 2 ) 2 + m M ( n − 2 ) ( m + M ) ⋅ ( a m M + a )
By the AM-GM Inequality, we have m M a + a ≥ 2 m M \frac{m M}{a}+a \geq 2 \sqrt{m M}a m M + a ≥ 2 m M with equality at m ≤ a = m M ≤ m \leq a=\sqrt{m M} \leqm ≤ a = m M ≤ M MM . We deduce that
( n + 1 2 ) 2 ≥ ( m + M ) 2 m M + ( n − 2 ) 2 + 2 ( n − 2 ) ( m + M ) m M \left(n+\frac{1}{2}\right)^{2} \geq \frac{(m+M)^{2}}{m M}+(n-2)^{2}+\frac{2(n-2)(m+M)}{\sqrt{m M}}
( n + 2 1 ) 2 ≥ m M ( m + M ) 2 + ( n − 2 ) 2 + m M 2 ( n − 2 ) ( m + M )
Setting t = m + M m M t=\frac{m+M}{\sqrt{m M}}t = m M m + M in the last inequality yields
( n + 1 2 ) 2 ≥ t 2 + ( n − 2 ) 2 + 2 ( n − 2 ) t = ( t + n − 2 ) 2 \left(n+\frac{1}{2}\right)^{2} \geq t^{2}+(n-2)^{2}+2(n-2) t=(t+n-2)^{2}
( n + 2 1 ) 2 ≥ t 2 + ( n − 2 ) 2 + 2 ( n − 2 ) t = ( t + n − 2 ) 2
from which it follows that
n + 1 2 ≥ t + n − 2 n+\frac{1}{2} \geq t+n-2
n + 2 1 ≥ t + n − 2
Hence t ≤ 5 / 2 t \leq 5 / 2t ≤ 5 / 2 , which is (1).
This problem was suggested by Titu Andreescu. The second solution was contributed by Adam Hesterberg, and the third by Zuming Feng.
The problems on this page are the property of the MAA's American Mathematics Competitions