Problem:
Let C CC be the coefficient of x 2 x^{2}x 2 in the expansion of the product
( 1 − x ) ( 1 + 2 x ) ( 1 − 3 x ) … ( 1 + 14 x ) ( 1 − 15 x ) (1-x)(1+2 x)(1-3 x) \ldots(1+14 x)(1-15 x)
( 1 − x ) ( 1 + 2 x ) ( 1 − 3 x ) … ( 1 + 1 4 x ) ( 1 − 1 5 x )
Find ∣ C ∣ |C|∣ C ∣ .
Solution:
Each of the x 2 x^{2}x 2 -terms in the expansion of the product is obtained by multiplying the x xx -terms from two of the 15 151 5 factors of the product. The coefficient of the x 2 x^{2}x 2 -term is therefore the sum of the products of each pair of numbers in the set { − 1 , 2 , − 3 , … , 14 , − 15 } \{-1,2,-3, \ldots, 14,-15\}{ − 1 , 2 , − 3 , … , 1 4 , − 1 5 } . Note that, in general,
( a 1 + a 2 + ⋯ + a n ) 2 = a 1 2 + a 2 2 + ⋯ + a n 2 + 2 ⋅ ( ∑ 1 ≤ i < j ≤ n a i a j ) \left(a_{1}+a_{2}+\cdots+a_{n}\right)^{2}=a_{1}^{2}+a_{2}^{2}+\cdots+a_{n}^{2}+2 \cdot\left(\sum_{1 \leq i<j \leq n} a_{i} a_{j}\right)
( a 1 + a 2 + ⋯ + a n ) 2 = a 1 2 + a 2 2 + ⋯ + a n 2 + 2 ⋅ ( 1 ≤ i < j ≤ n ∑ a i a j )
Thus
C = ∑ 1 ≤ i < j ≤ 15 ( − 1 ) i i ( − 1 ) j j = 1 2 ( ( ∑ k = 1 15 ( − 1 ) k k ) 2 − ∑ k = 1 15 k 2 ) = 1 2 ( ( − 8 ) 2 − 15 ( 15 + 1 ) ( 2 ⋅ 15 + 1 ) 6 ) = − 588 \begin{aligned}
C = \sum_{1 \leq i < j \leq 15} (-1)^{i} i (-1)^{j} j &= \frac{1}{2} \left( \left( \sum_{k=1}^{15} (-1)^{k} k \right)^{2} - \sum_{k=1}^{15} k^{2} \right) \\
&= \frac{1}{2} \left( (-8)^{2} - \frac{15(15+1)(2 \cdot 15+1)}{6} \right)= -588
\end{aligned}
C = 1 ≤ i < j ≤ 1 5 ∑ ( − 1 ) i i ( − 1 ) j j = 2 1 ⎝ ⎛ ( k = 1 ∑ 1 5 ( − 1 ) k k ) 2 − k = 1 ∑ 1 5 k 2 ⎠ ⎞ = 2 1 ( ( − 8 ) 2 − 6 1 5 ( 1 5 + 1 ) ( 2 ⋅ 1 5 + 1 ) ) = − 5 8 8
Hence ∣ C ∣ = 588 |C|=\boxed{588}∣ C ∣ = 5 8 8 .
OR \textbf{OR}
OR
Note that
f ( x ) = ( 1 − x ) ( 1 + 2 x ) ( 1 − 3 x ) … ( 1 − 15 x ) = 1 + ( − 1 + 2 − 3 + ⋯ − 15 ) x + C x 2 + ⋯ = 1 − 8 x + C x 2 + ⋯ \begin{aligned}
f(x) &=(1-x)(1+2 x)(1-3 x) \ldots(1-15 x) \\
&=1+(-1+2-3+\cdots-15) x+C x^{2}+\cdots \\
&=1-8 x+C x^{2}+\cdots
\end{aligned}
f ( x ) = ( 1 − x ) ( 1 + 2 x ) ( 1 − 3 x ) … ( 1 − 1 5 x ) = 1 + ( − 1 + 2 − 3 + ⋯ − 1 5 ) x + C x 2 + ⋯ = 1 − 8 x + C x 2 + ⋯
Thus f ( − x ) = 1 + 8 x + C x 2 − ⋯ f(-x)=1+8 x+C x^{2}-\cdotsf ( − x ) = 1 + 8 x + C x 2 − ⋯ .
But f ( − x ) = ( 1 + x ) ( 1 − 2 x ) ( 1 + 3 x ) … ( 1 + 15 x ) f(-x)=(1+x)(1-2 x)(1+3 x) \ldots(1+15 x)f ( − x ) = ( 1 + x ) ( 1 − 2 x ) ( 1 + 3 x ) … ( 1 + 1 5 x ) , so
f ( x ) f ( − x ) = ( 1 − x 2 ) ( 1 − 4 x 2 ) ( 1 − 9 x 2 ) … ( 1 − 225 x 2 ) = 1 − ( 1 2 + 2 2 + 3 2 + ⋯ + 1 5 2 ) x 2 + ⋯ \begin{aligned}
f(x) f(-x) &=\left(1-x^{2}\right)\left(1-4 x^{2}\right)\left(1-9 x^{2}\right) \ldots\left(1-225 x^{2}\right) \\
&=1-\left(1^{2}+2^{2}+3^{2}+\cdots+15^{2}\right) x^{2}+\cdots
\end{aligned}
f ( x ) f ( − x ) = ( 1 − x 2 ) ( 1 − 4 x 2 ) ( 1 − 9 x 2 ) … ( 1 − 2 2 5 x 2 ) = 1 − ( 1 2 + 2 2 + 3 2 + ⋯ + 1 5 2 ) x 2 + ⋯
Also f ( x ) f ( − x ) = ( 1 − 8 x + C x 2 + ⋯ ) ( 1 + 8 x + C x 2 − ⋯ ) = 1 + ( 2 C − 64 ) x 2 + ⋯ f(x) f(-x)=\left(1-8 x+C x^{2}+\cdots\right)\left(1+8 x+C x^{2}-\cdots\right)=1+(2 C-64) x^{2}+\cdotsf ( x ) f ( − x ) = ( 1 − 8 x + C x 2 + ⋯ ) ( 1 + 8 x + C x 2 − ⋯ ) = 1 + ( 2 C − 6 4 ) x 2 + ⋯ . Thus 2 C − 64 = − ( 1 2 + 2 2 + 3 3 + ⋯ + 1 5 2 ) 2 C-64=-\left(1^{2}+2^{2}+3^{3}+\cdots+15^{2}\right)2 C − 6 4 = − ( 1 2 + 2 2 + 3 3 + ⋯ + 1 5 2 ) , and, as above, ∣ C ∣ = 588 |C|=\boxed{588}∣ C ∣ = 5 8 8 .
The problems on this page are the property of the MAA's American Mathematics Competitions